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Memorandum

TO: Thierry Prate, PB
Ridership and Revenue Peer Review Panel

FROM: Rachel Copperman
Jeff Buxbaum
Weimin Huang

DATE: January 8, 2014

RE: California High Speed Rail Ridership and Revenue Forecasts
Methods and Forecasts including Risk Analysis

CS employed a risk analysis approach to our ridership and revenue forecasts for the 2014
Business Plan. The risk analysis model includes a range of assumptions for the factors that we
believe have the greatest impact on high-speed rail ridership and revenue. We ran the Version
2.0 Ridership and Revenue Model numerous times with varied input assumptions for each
forecast year to develop the information necessary for the estimation of regression models of
High Speed Rail (HSR) revenue. Working with assumptions regarding the probability
distributions for each of the risk factors, we used the regression models in a Monte Carlo
simulation to produce thousands of revenue forecasts for each of four forecast years
corresponding to three potential phases of the project:

e Initial Operating Segment: Merced to San Fernando Valley: 2022;

e Bay-to-Basin: San Jose to San Fernando Valley, with a spur to Merced: 2027;

e Phase 1 Blended: San Francisco to Los Angeles, with a spur to Merced: 2029 and 2040

Ridership for each of the revenue forecasts was also estimated using the relationship between
ridership and revenue.

This memo explains:

e The process for selecting the risk factors;
e The assumptions regarding the probability distributions of the risk factors;

e The fractional factorial design for running the full ridership and revenue model to obtain
data points for development of the Risk Analysis Model regression equations;

e The estimated regression equations for each model year; and

e The forecast results from the Monte Carlo Simulation.
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Selecting Risk Factors

HSR ridership and revenue forecasts are greatly impacted by assumptions. We started by
compiling a comprehensive list of factors that could affect high-speed rail ridership and then
selected the six factors we thought would have the greatest potential variability and/or
influence on total high-speed rail ridership. Our rationale for selecting the factors is described
below.

Potential Risk Factors

One of the most important considerations to remember about travel demand models is that they
are based on cross-sectional snapshots of travel patterns and traveler behavior. Thus, an
underlying assumption in travel demand models like the HSR Ridership and Revenue model is
that travelers’ responses to future travel options will be the same as they were when the
snapshot was taken. While this may suffice for short-term forecasts, when considering long
term forecasts this simple approach ignores the likelihood of significant changes in traveler
behavior resulting from structural changes in society and the economy. Examples from the past
of such changes include:

¢ Increasing workforce participation by women in the 60s, 70s and 80s of last century.

¢ Introduction of new work options such as telecommuting, shared jobs, and web-based
conference calls (e.g. GoToMeeting™).

e Demographic shifts, such as the aging of the baby boomers, accompanied with increasing
longevity and activity.

e Globalization of markets.
e Technological advances such as the internet, cell phones, and smart phones.
While we cannot know for certain what new changes will occur in society, we can speculate on

what some of those changes might be and incorporate some of that speculation into our
forecasts for the risk analysis.

There are two major risk categories:

e Future Expectations Risks - those that have to do with our expectations regarding the future
(i.e. model inputs); and

e Model Related Risks - those that have to do with the inner workings of the model that reflect

traveler behavior (i.e. model coefficients and constants)

While these two categories are not entirely independent, it is a useful way to think about the
factors that influence potential long distance travel in California.

Appendix A of this memo has a long list of potential risk factors along with how we proposed
addressing them in our analysis. As we considered more risks, we knew that the amount of
computation time and analysis necessary to include those risks in the Monte Carlo simulation

——
-2- CAMBRIDGE



—
CAMBRIDGE

Transportation leadership you can trust.

process would increase significantly. Therefore, we kept the risks to the handful that we judged
would have the largest impacts on ridership and revenue. Some of the risks we believe to be so
speculative or difficult to address that we did not include them but, rather, chose to address
through discussion in our final report. There was also a middle ground of risks that we chose to
address through sensitivity test model runs.

In all cases, we tried to select risk factors as independent of each other as possible to reduce the
complications caused by correlation of the factors. A high level of correlation between the risk
factors could lead to invalid results; many statistical software packages fail to execute when a
high level of correlation between independent variables exists.

Selected Risk Factors

After compiling the comprehensive list of factors we thought could affect high-speed rail
ridership, we narrowed the list to six factors that we thought would have the greatest impact on
total high-speed rail ridership:

1. Total California population, households, and employment;
2. Spatial distribution of population and employment;

3. Auto operating cost;

4. Airline fares;

5. High speed rail main mode choice constants;

6. Trip frequency model constants;

Range of Risk Factor Values and Distributions

To conduct the risk analysis, each factor must be quantified so it can be treated as a continuous
independent variable within a regression model represented as a distribution of values. The
middle value often (but not always) has the greatest likelihood of occurring. The shape of the
distribution can be triangular, normal, uniform, or another form. The shape of this distribution
determines the likelihood of an independent variable’s value under random sampling.

For each risk factor, we developed low, middle, and high values for each forecast year, and then
developed a distribution around these values based on best available research and analysis (see
Table 1). The distributions are described in more detail in the following sections.
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Table 1 Risk Factor Values and Distributions

Risk Factor

Regression Model Inputs

Risk Factor Quantitative Value Level®* | Description Distribution Description
2022 2027 2029 2040
Overall ' High Cglifornia Statewide Travel Demand Model Forecast - 1148 1208 1932 1372
Population E:S:e%foflztsu[g year High household and employment growth rate Correlated with Regional
and Mid Mid-level household and employment growth rate 1132 | 1183 | 1199 | 1.305 | Spatial Distribution as shown
observed year 2010 ;
Employment households in Table 4
Growth Low Low household and employment growth rate 1.098 1131 1141 1191
High gglgorma tShtat?w!deSTra\J/el De_m?/nd” Model Forecast - 0415 0120 0122 0134
Regional Ratio of San Joaquin Igh growth rate In san Joaquin Valiey Correlated with Regional
Spatial Valley population to Mid Mid-level growth rate in San Joaquin Valley 0103 | 0.105 | 0.106 | 0.112 | Spatial Distribution as shown
Distribution rest of California in Table 3
Low Low growth rate in San Joaquin Valley 0.101 0.102 0.103 0.107
High Based on high fuel forecasts and low fuel efficiency $0.26 | $0.24 | $0.24 | $0.24 | Triangular, with Low set to 15
Auto percent probability of
Operating $/mile (2005$) Mid Reference/Base $0.21 $0.20 $0.19 $0.20 | occurrence and High at 85
Cost! percent probability of
Low Based on low fuel forecasts and high fuel efficiency $0.18 $0.17 $0.16 $0.15 | occurrence
High lgnﬂ’egﬁl'\i”:gfiiie agcgiifié” 2012 Business Planairline | 4 46 | 446 | 116 | 1.16 | Triangular, with Low setto 15
P p percent probability of
Airline Fares | Air fare skim factor Mid Base scenario, consistent with 2012 Business Plan runs 1.00 1.00 1.00 1.00 | occurrence and High at 85
- - - — t probability of
9 percent reduction, as used in 2012 Business Plan airline percen
Low compelitive response scenario 0.91 0.91 0.91 0.91 | occurrence
) , Equivalent to 60 fewer minutes of IVTT for
ng.h Speed . High business/commercial (90 for recreation/other) 061 061 061 061 T
Rail Main Change in HSR Average of Offset Approach for CVR and Air Offset Normal distribution with
Mode Choice | constant units from Mid 9 pp 0 0 0 0 | Mean =0 and Standard
Method g
Model Base Equivalent (o 60 inutes of IVTT T Deviation = 0.48
Constants? Low quivateni T b1 more Miies ot v Tor 061 | -061| 061 -061
business/commercial (90 for recreation/other)
Trip High Increase from Mid scenario of 1.75 round trips per person 9.11 9.11 9.11 9.11
- - Truncated Normal distribution
voder | oundiips percapta | M0 | aversgeof 736 round s perporson 73| 73| 736 736 | wihMean=7.36and
Constants : Standard Deviation = 0.85
Low Decrease from Mid scenario of 1.75 round trips per person 5.61 5.61 5.61 5.61

1 See memorandum, “Revised forecasts of gasoline prices and fuel efficiency for use in 2014 Business Plan Model Runs and Forecasts” dated September 30, 2013.
2 See memorandum, “ Version 2 Model High Speed Rail Alternative Specific Constants” dated January 8, 2014.

3 High and low values for specific risk analysis experiments used to develop data points for risk analysis regressions - see Table 5.
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Socio-economic Risk Factors (Overall Population and Employment Growth and
Regional Spatial Distribution)

CS assembled county-level socioeconomic estimates and forecasts from many sources,
including:

e California Statewide Travel Demand Model (CSTDM);

e U.S. Census Bureau;

e Moody’s Analytics (Economy.com);

e  Woods & Poole, Inc.;

e California Department of Finance (DOF);

e California Employment Development Department;

e California Economic Forecast Project (CEF);

e University of Southern California (Price School);

e UCLA (Anderson School);

e Center for Continuing Study of the California Economy; and

e MPOs: Metropolitan Transportation Commission (MTC); Sacramento Area Council of
Governments (SACG); San Diego Association of Governments (SANDAG); Southern
California Association of Governments (SCAG); and the San Joaquin Valley MPOs.

For most sources, we assembled and reviewed forecasts from multiple publication years
beginning in the early 2000s (and as early as 1965 for one source). This history allowed us to
assess each source’s accuracy versus actual conditions over many years. Overall, we found that
the U.S. Census Bureau’s population and household projections were reasonably accurate.
Other sources, mostly prepared by California-based organizations, tended to over-predict
population, households and employment.

The CSTDM forecasts served as the starting point since they were recently updated to reflect
adopted MPO forecasts (as of early summer 2013). The preponderance of information suggests
that CSTDM forecast represents a likely high end of the future statewide socioeconomic growth.
This forecast source assumes a statewide annual population growth rate of 1.01 percent, which
is above the recent averages described in the prior paragraph and observed trends over the past
several years. The CSTDM forecast also assumes an average population growth rate higher than
the employment growth, which is counter to California’s trends between World War II and the
recent recession.

Beyond statewide trends, the CSTDM forecast incorporate very aggressive growth assumptions
for the San Joaquin Valley!. These statewide and regional assumptions produce Valley-wide
forecasts that are 10 percent to 20 percent larger than any other source. The CSTDM forecasts

1 For this analysis, San Joaquin Valley includes San Joaquin, Stanislaus, Merced, Madera, Fresno, Tulare,
Kings, and Kern counties.
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are also at odds with recent growth trends and state growth policies that aim to reduce
greenhouse gas emissions by directing new socioeconomic growth into currently developed
areas.

Based on these analysis results, we incorporated two components of socioeconomic growth in
the risk analysis and then combined them in a matrix of distributions.

e Statewide population, household, and employment forecasts (shown in Table 2 for each
decade and the travel model years); and,

e Share of California population in San Joaquin Valley counties (Table 3).
— Distribution 1 follows the CSTDM forecasts.

— Distribution 2 follows the Valley-wide average distribution from recent statewide
forecasts, with excess population, employment, and household-related employment
shifted to the Bay Area, the Sacramento region, and Southern California.

— Distribution 3 reflects a further shifting of population, household, and employment
growth from the San Joaquin Valley to all other California regions. It assumes that the
San Joaquin Valley will see 2010 to 2050 growth patterns that are closer to statewide
averages (for population and households) and long-term historical patterns for jobs.

Table 2 Statewide Socioeconomic Forecasts for Ridership and Revenue Risk Analysis Model
(in millions)

High Range Forecast Mid Range Forecasts Low Range Forecast

House- Employ- House- Employ- House- Employ-

Year | Population | ment | POPulation| o ment | FOPUlation | - e ment

2010 | 37.309 12.587 16.052 37.309 12.607 16.078 37.309 12.606 16.078
2020 | 41.578 14177 18.677 40.790 13.909 18.683 39.756 13.515 17.859
2022 | 42436 14.454 19.018 41.889 14.268 18.773 40.583 13.839 18.188
2027 | 44.626 15.206 19.870 43.761 14.911 19.485 41.829 14.257 18.624
2029 | 45.503 15.506 20.211 44.359 15.116 19.703 42218 14.386 18.752
2034 | 47.693 16.258 21.063 45.506 15.512 20.097 42.742 14.549 18.876
2040 | 50.357 17.272 22198 47.951 16.447 21.138 44111 15.016 19.445
2050 | 54.869 18.761 24128 51.106 17.474 22473 46.762 15.989 20.563

Note: Ridership and revenue model forecast years are indicated by bold font in the “year” column.

——
-6 - CAMBRIDGE



—
CAMBRIDGE

Transportation leadership you can trust.

Table 3 Share of Statewide Socioeconomics in San Joaquin Valley Counties

Distribution 1 (CSTDM) Distribution 2 Distribution 3

House- Employ- . House- Employ- . House- Employ-
holds ment Population holds ment Population holds ment

Year |Population

2010 | 10.66% 9.66% 9.33% 10.66% 9.66% 9.33% 10.66% 9.66% 9.33%
2020 | 12.30% 11.34% 10.02% 1.11% 10.23% 9.57% 10.95% 10.08% 9.12%
2022 | 12.52% 11.53% 10.21% 11.20% 10.31% 9.62% 11.00% 10.13% 9.17%
2027 | 13.06% 12.00% 10.69% 11.42% 10.49% 9.96% 11.15% 10.24% 9.31%
2029 | 13.27% 12.19% 10.88% 11.51% 10.57% 10.09% 11.20% 10.29% 9.37%
2034 | 13.81% 12.66% 11.36% 11.73% 10.75% 10.43% 11.35% 10.40% 9.53%
2040 | 14.37% 13.38% 12.13% 12.00% 11.17% 11.07% 11.52% 10.72% 9.65%
2050 | 16.10% 15.24% 13.31% 12.45% 11.78% 11.67% 11.80% 11.18% 9.87%

Note: Ridership and revenue model forecast years are indicated by bold font in the “year” column.

We combined the information shown in Tables 2 and 3 and assigned probabilities to the
outcomes (Table 4) based on the following rationale:

e We assigned the highest probability to the middle combination of mid-level statewide
growth and “Distribution 2.” This combination shows more modest statewide and San
Joaquin Valley growth at rates that are consistent with the more recently-published third-
party sources and are in line with historical trends.

e The highest probability is along the top left to bottom right diagonal because of how total
growth and distribution match up. This diagonal reflects a general principal found in all of
the third-party sources - namely, any departure from “average” statewide socioeconomic
growth will depend on the fortunes of the San Joaquin Valley. If the growth levels assumed
in the CSTDM were to occur, it is likely that the distribution associated with the CSTDM --
lots of growth in the San Joaquin Valley -- would occur. Similarly, lower statewide growth
levels would more likely occur along with a distribution that has less relative growth in the
San Joaquin Valley.

e The probability of a statewide growth and regional distribution combination decreases
somewhat rapidly as we depart from the diagonal line mentioned above.
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Table 4 Likelihood of Statewide and San Joaquin Valley Socioeconomic Growth
Combinations

Percentage of Statewide Growth in San Joaquin Valley Counties
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Auto Operating Cost

CS updated the range of gasoline prices and fuel efficiency forecasts in California with the latest
U.S. Energy Information Administration (EIA) projections. This update is documented in our
September 30" memo on auto operating costs.2 The memo described low, mid, and high
estimates of forecast year auto operating costs which were used as the respective values for the
auto operating cost risk factor. The low and high values for auto operating costs were set as the
15th and 85t percentiles, respectively, in a triangular distribution. This means that 30 percent of
the scenarios in the Monte Carlo simulation were likely to have values lower or higher than
these levels—15 percent of the observations on either side. So, for 2022, the range of values
used in the risk analysis was actually broader than $0.18 to $0.26 per mile values specified as the
“low” and “high” values for auto operating cost. The highest probability of occurrence was at
the mid value of $0.21/mile. Similar assumptions were made for other forecast years with the
low and high values for the 15t and 85t percentiles, and the mid values as specified in Table 1.

Figure 1 shows the shape of the auto operating cost distribution for 2022. The x-axis shows the
auto operating cost ($/mile) in 2005 dollars. The curve (i.e. triangle) shows the probability of
occurrence for a specific auto operating cost value in the Monte Carlo simulation. Figure 2

2 Revised forecasts of gasoline prices and fuel efficiency for use in 2014 Business Plan Model Runs and Forecasts
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shows a histogram of the actual number of simulations by auto operating cost for 2022 for the
5,000 simulations performed juxtaposed on the specified curve (note that the other input
variables also varied for the 5,000 simulations). As specified, 750 of the simulations, or 15
percent, had auto operating costs less than $0.18 per mile and 4,250 of the simulations, or 85
percent, had auto operating costs less than $0.26 per mile. The greatest numbers of simulations
were performed with values around the mid value of $0.21 per mile. Since the triangular
distribution was skewed to the right, only about 42.4 percent of the simulations had auto
operating costs less than the mid value of $0.21 per mile.

Auto Op Cost 2022

Frobability

014 LR nAa 020 0.2z 024 026 0.5 03

Figure 1 Year 2022 Auto Operating Cost Distribution
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Figure 2 Year 2022 Auto Operating Cost Distribution - From Monte Carlo Simulation

Air Fares

Forecast year mid-level air fares remain consistent with the 2012 Business Plan, which were
developed in 2011 by Cambridge Systematics and Aviation System Consulting. As part of
sensitivity analysis for the 2012 Business Plan ridership and revenue forecasting, Cambridge
Systematics, in partnership with Aviation System Consulting, developed airline competitive
response scenarios. The low-fare scenario specified a 9 percent reduction in real fares from 2009
levels and the high-fare scenario increased real fares over 2009 levels by an average of 16
percent across all markets. The reasoning for the choice of these alternative scenarios is detailed
in 2012 Business Plan Ridership and Revenue Forecasting Tech Memo.

We did not perform a new detailed analysis of the future of California airlines” reaction to the
introduction of HSR; rather, we retained the 2012 Business Plan assumptions for the airline
level-of-service and potential future variations in fares. A brief discussion with Aviation
System Consulting confirmed that the analysis they performed in 2011 is still generally relevant
and no significant changes had occurred since then.

It should be noted that the fares in the 2012 Business Plan high-fare scenario differed by market
for an average of a 16 percent increase. However, varying the fares by air market segment
would have significantly increased the effort needed to produce each full Monte Carlo
simulation. Thus, for the 2014 Business Plan, the 16 percent increase in fares was uniformly
assumed for all air markets.
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A 9 percent reduction in fares was set as the low value at the 15t percentile, and a 16 percent
increase in fares is set as the high value at the 85t percentile. Unlike the assumptions regarding
auto operating cost, the same air fare distribution was applied for all forecast years. Figure 3
juxtaposes the histogram of simulations for 2022 the specified distribution. Histograms similar
to that shown for 2022 could be produced for the other forecast years. For 2022, a total of 757 of
the simulations, or 15.14 percent, had air fare factors less than 0.91 and 426 of the simulations, or
85.34 percent, had air fare factors less than 1.16. The greatest numbers of simulations were
performed with values around the mid value of 1.0. Since the triangular distribution was
skewed to the right, only about 41.7 percent of the simulations had air fare factors less than the
mid value of 1.0.
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Figure 3 Year 2022 Distribution of Factors Applied to Air Fare Mid-level Matrix

High-Speed Rail Main Mode Choice Constants

An important part of any mode choice model is a modal constant that explains factors that are
not quantifiable by the stated and revealed preference (RP) surveys. When dealing with
existing modes such as auto, conventional rail (CVR), and air, we can calibrate this constant by
comparing the model outcomes to observed behavior. With a new mode like HSR, this is
impossible, so there is uncertainty in the specified constant.

Uncertainty in the HSR constants comes from the distributional assumptions of the model itself
and the data used to estimate the model. The former is relatively straightforward, in that the
logit model may not be an accurate representation of how individuals actually make mode
choices. The latter refers to the uncertainties associated with how the stated preference (SP)
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data were collected, the survey instrument, respondents perceptions based on “public opinion”
at time of the survey, and other related issues. This uncertainty is driven by the following;:

1. HSR currently does not exist in California, and thus we are unable to calibrate the HSR
constant to observed mode shares.

2. HSR does not exist in the United States. Americans have very little experience with
HSR, so we can not use oberved data or experiences from other parts of the country to
guide our knowledge in assessing Californian’s willingness to use HSR. In addition,
while we have gained some insights from SP surveys on the attractiveness of HSR
between destinations within California, these results have a degree of error and
uncertainty due to the lack of actual experience on HSR. In many travel-related SP
surveys, individuals are asked to assess a new mode with which they are familiar, such
as a new bus, toll road, or urban rail system, even if it does not provide service for the
travel being considered.

3. Uncertainty exists in the HSR system itself. The HSR constant captures all unobserved
attributes and variables that affect an individual’s decision to use HSR that are not
captured by other variables within the model. This includes wait and terminal times,
the existence or non-existence of security checkpoints, attractiveness of the HSR stations,
and amenities on trains such as food options, wireless internet, etc.

4. Uncertainty exists in the mode choice model and the methodology used to calculate the
HSR constant. Inherent uncertainty exists in all parts of model estimation including,
but not limted to, the estimated variables within the mode choice model, sampling error
associated with the data summarized from the SP survey, sampling error with the
observed data collected for calibration of the existing model, and the method used to
specify the mid-level HSR constants.

Mid-level HSR constants were specified based on the relationships of the air, CVR, and HSR
constants estimated using SP data, and the air and CVR constants after calibration to match
observed 2010 travel’. The normal distribution was chosen to represent the uncertainty in the
HSR constants. Further, to avoid overcomplicating the risk analysis model, the distribution of
the HSR constant was not varied by trip purpose. The risk factor used in the risk analysis
regression equation was the HSR constant unit change from the mid-level (specified) HSR
constant. The mid-level risk factor value for the HSR constant is set to 0.0 (i.e. 0.0 change from
the specified constant). A 0.1 unit change in the risk factor value would correspond to a 0.1 unit
increase in the HSR constant for each purpose. Note that an increase in the constant means an
increase in the desirability of the mode.

To develop the variance for the HSR constant distribution, we started by considering a value for
the absolute minimum HSR constant. Since there was no apparent reason that any of the
unobserved characteristics for the HSR mode should be any worse than those for the CVR
mode, we thought the CVR constant should represent this minimum value for the HSR
constant. As mentioned above, a single distribution was applied for all trip purposes due to the

3 See memorandum, “ Version 2 Model High Speed Rail Alternative Specific Constants”.
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constraints in our application of the risk analysis procedure. Because recreation/other was, by
far, the most prevalent long-distance trip purpose (about 75 percent of all long distance trips),
we focused on the relationship between the recreation/other mode choice model CVR and HSR
constants. The CVR constant was -1.25 units lower than the HSR constant for the
recreation/other trip purposes; thus, -1.25 was selected as the lower bound for the unit offset for
the distribution. Since the normal distribution was used for the risk analysis, we chose the 0.5t
percentile value of the distribution to correspond to the offset value of -1.25. Thus, 0.5 percent
of the time (1 in 200), the HSR constant used in the risk analysis for recreation/other would be
less than the CVR constant.

The above led to the specification that the deviation in the HSR constant used in the risk
analysis would follow a normal distribution with mean zero and standard deviation 0.48.
Figure 4 shows the distribution of HSR constant offsets used for 2022. 49.66 percent of the
simulations used a HSR constant offset less than 0.0; 24 of the 5,000 simulations (0.48 percent)
used offsets less than -1.25 (i.e. the net effect of producing the CVR constant as noted above)
and 29 of the simulations (0.58 percent) used offsets more than 1.25.
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Figure 4 2022 Distribution of HSR Constant Units from Mid Scenario

Trip Frequency Model Constants

Similar to the uncertainty found in the HSR constants, uncertainty also exists in the constants
calibrated for the trip frequency model. The trip frequency model estimates the total number
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long-distance trips (greater than or equal to a straight-line distance of 50 miles from the trip
maker’s home) made per person per day. The data used for the trip frequency model
estimation was from the long-distance travel portion of the 2012-2013 California Household
Travel Survey (CHTS). The data used for calibration was based on 2012-2013 CHTS data
weighted (expanded) to match 2010 California population characteristics.*

Based on the weighted 2012-2013 CHTS data, California residents made an annual average of
8.2 intra-California long distance trips (50 miles or more) per person in 2010. For long distance
trips over 100 miles in length, the overall average annual trips per capita estimated using the
weighted 2012-2013 CHTS was close to the midpoint of national data collected in the 1995
American Travel Survey and the 2001 National Household Travel Survey. Thus, we were
confident that the HSR ridership and revenue trip frequency model calibrated to match 2010
trip making estimated using the 2012-2013 CHTS data should be used to set the midpoint trip
rates for the risk analysis.

The annual intra-California long distance trips per person estimated using data from the 2011
Harris panel long distance survey performed for the CAHSRA was 6.0 trips per person per
year. We believed there was a very high probability that the true number of annual trips per
person per year was above the reported Harris Survey number. Thus, we considered 2.2 annual
trips below the annual average long distance trips per person forecast using the calibrated trip
frequency model as the lower bound in the distribution.

The calibrated trip frequency model constants resulted in averages of 7.36 annual long-distance
trips per person for each of the forecast years®. These values represented the mid-level values in
the distribution for the risk analysis. We used a normal distribution, with a standard deviation
of 0.85. This resulted in 2.2 annual trips less per person than the mid-level value to fall at the
0.5t percentile (i.e. 0.5 percent of the annual trips per person simulations were less than 5.16).
Figure 5 shows the distribution for 2022.

4 Version 2.0 Model - Processing of California Household Travel Survey Data for Model Calibration and
Validation, September 2013.

5 The difference in annual long-distance trips from the weighted CHTS is, in part, due to the elimination
of long-distance bus trips from the dataset.
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Figure 5 Distribution of Average Annual Roundtrips/person

The Risk Analysis Model

Ridership and Revenue Version 2.0 Model Runs

Once the risk factors and their distributions were defined, the full ridership and revenue model
was run to obtain input into the Risk Analysis regression equations. We began by running a
“mid-level” model run with all six factors set at the mid value (see Experiment Number 1 in
Table 5) for each forecast year. To limit the number of model runs to a reasonable level we
pursued a fractional 2-level factorial design for running the full model using high and low
values for input variables as shown in Table 1. Thirty-two runs (Experiment Numbers 2-33 in
Table 5) were used to estimate all the main effects and two-factor interactions resulting from
varying the input data. This design, which was only one-half of the 64 runs required for a full
2-level factorial design for 6 factors, saved run time but could not be used to estimate
interactions between three or more factors. However, we do not have reason to believe there
would be large high-order interactions among the risk factors we selected. Additional runs
with data points between the mid level and low level, and between the mid-level and high-level
values of each risk factor distribution were added to provide information regarding the non-
linearity of the forecast distributions and to ensure that the regression models represented the
middle values within the distributions, and not just the extremes (Experiment Numbers 34-47 in
Table 5). These additional runs were important since the regression models, discussed in the
next section, were exponential rather than linear.

—
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Risk Analysis Regression Models for Ridership and Revenue

Ridership vs. Revenue

We began the analysis by testing the relationship between ridership and revenue resulting from
the Version 2 Model runs. Revenue and ridership were closely correlated with a R2 of more
than 0.999 for each year. The relationship between ridership and revenue for each forecast year
was as follows:

Year 2022 Revenue = 55.147 * Ridership
Year 2027 Revenue = 55.401 * Ridership
Year 2029 Revenue = 47.467 * Ridership
Year 2040 Revenue = 47.049 * Ridership

For all the 47 runs in each model year, the predicted revenues from the above equations were
compared with the actual revenues, and the results show the differences between predicted
revenue based on ridership versus actual revenue was between -9 percent and 5 percent.

Since revenue and ridership were highly correlated, we developed regression equations for
revenue only and used the above relationships between revenue and ridership to calculate the
corresponding ridership forecasts for the risk analysis.

———
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Table 5 Ridership and Revenue Version 2.0 Model Run Experiments for each Forecast Year!

q Regional Auto :
E);lpe"me"t Overall Growth Sgatial operating Airline fares I'!SR LB Vi) i TER)
umber s Choice Constant Constant

Distribution cost
1 Mid Mid Mid Mid Mid Mid
2 Low Low Low Low Low Low
3 Low Low Low Low High High
4 Low Low Low High Low High
5 Low Low Low High High Low
6 Low Low High Low Low High
7 Low Low High Low High Low
8 Low Low High High Low Low
9 Low Low High High High High
10 Low High Low Low Low High
11 Low High Low Low High Low
12 Low High Low High Low Low
13 Low High Low High High High
14 Low High High Low Low Low
15 Low High High Low High High
16 Low High High High Low High
17 Low High High High High Low
18 High Low Low Low Low High
19 High Low Low Low High Low
20 High Low Low High Low Low
21 High Low Low High High High
22 High Low High Low Low Low
23 High Low High Low High High
24 High Low High High Low High
25 High Low High High High Low
26 High High Low Low Low Low
27 High High Low Low High High
28 High High Low High Low High
29 High High Low High High Low
30 High High High Low Low High
3 High High High Low High Low
32 High High High High Low Low
33 High High High High High High
34 High High Mid Mid Mid Mid
35 Mid High Mid Mid Mid Mid
36 Mid Mid Mid MidHigh MidLow MidLow
37 Mid Mid MidHigh Mid MidLow MidLow
38 Mid Mid Mid MidLow MidLow MidHigh
39 Mid Mid MidHigh Mid MidLow MidHigh
40 Mid Mid MidLow Mid MidHigh MidHigh
41 Mid Mid Mid Mid MidHigh MidLow
42 Mid Mid MidLow MidLow MidHigh MidHigh
43 Mid Mid Mid MidHigh MidHigh MidLow
44 Mid Mid Mid Mid Low Mid
45 Mid Mid Mid Mid MidLow Mid
46 Mid Mid Mid Mid MidHigh Mid
47 Mid Mid Mid Mid High Mid

1 Refer to Table 1 for high and low values used.
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Revenue Regression Models

Using the results from the ridership and revenue forecasts from each of the 47 full model runs,
we estimated relationships between the revenue forecasts and the input risk factor levels. The
Monte Carlo method, described in the next section, made it feasible to quickly produce the
thousands of revenue forecasts based on varying levels of the input risk factor variables that
were necessary to estimate probabilities of specific outcomes. The revenue forecasts produced
using the Monte Carlo method were predicated on deterministic equations (in our case, the
regression models). Therefore, special attention was given to the construction of the
deterministic equations. We analyzed both linear and non-linear transformations of model
variables, and found that exponential relationship between revenue and risk factors resulted in
the best model fits, with all forecast years having R2 above 0.99. The differences between
predicted revenues and estimated revenues from the full model runs was between +5 percent.
For each of the forecast years, the regression models had the following functional form:

Revenue = exp(Intercept + a * Overall Growth + b * Regional Spatial Distribution + ¢ * Auto
operating cost + d * Airline fares + e * HSR Mode Choice Constant + f * Trip Frequency
Constant)

The coefficients and related statistical measures for each forecast year are shown in Tables 6
through 9. The standardized estimates show the estimated changes in revenue (in standard
deviation units) when the specified input variable is increased by one standard deviation. For
all years, the HSR mode choice constant has the highest standardized estimate, followed by the
annual round trips per person and the auto operating cost.

Table 6: Regression Equation for Year 2022 Initial Operating Segment

Para_meter Standard t Value Pr> |t Stand_ardized
Estimate Error Estimate
Intercept 16.961 0.186 91.25 <.0001 0.000
Growth in Households 1.411 0.151 9.32 <.0001 0.059
Regional Spatial Distribution 2.491 0.506 4.93 <.0001 0.031
Auto Operating Cost 1.569 0.096 16.31 <.0001 0.102
Airline Fares 0.085 0.031 2.76 0.0088 0.017
HSR Mode Choice Constant 0.895 0.006 145.27 <.0001 0.912
Annual Round Trips/Person 0.137 0.002 62.88 <.0001 0.395
Adjusted R-square 0.998
]
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Table 7: Regression Equation for Year 2027 Bay-to-Basin

PEara!meter Standard t Value Pr> I Stan({ardized
stimate Error Estimate
Intercept 17.580 0.152 115.75 <.0001 0.000
Growth in Households 1.343 0.111 12.04 <.0001 0.091
Regional Spatial Distribution 1.461 0.450 3.25 0.0024 0.024
Auto Operating Cost 1.692 0.109 15.59 <.0001 0.117
Airline Fares 0.098 0.034 2.87 0.0065 0.021
HSR Mode Choice Constant 0.827 0.007 120.50 <.0001 0.898
Annual Round Trips/Person 0.137 0.002 56.46 <.0001 0.421
Adjusted R-square 0.997
Table 8: Regression Equation for Year 2029 Phase 1 Blended
e | St | vvawe | ey | Saeded
Intercept 17.961 0.135 133.54 <.0001 0.000
Growth in Households 1.302 0.095 13.68 <.0001 0.107
Regional Spatial Distribution 0.876 0.413 2.12 0.0400 0.016
Auto Operating Cost 1.631 0.103 15.87 <.0001 0.124
Airline Fares 0.093 0.034 2.74 0.0091 0.021
HSR Mode Choice Constant 0.791 0.007 116.32 <.0001 0.891
Annual Round Trips/Person 0.136 0.002 56.56 <.0001 0.433
Adjusted R-square 0.997
Table 9 Regression Equation for Year 2040 Phase 1 Blended
e | St | v | e | S
Intercept 18.010 0.090 200.32 <.0001 0.000
Growth in Households 1.232 0.052 23.78 <.0001 0.198
Regional Spatial Distribution 1.022 0.328 3.12 0.0034 0.026
Auto Operating Cost 1.767 0.106 16.71 <.0001 0.140
Airline Fares 0.106 0.039 2.74 0.0092 0.023
HSR Mode Choice Constant 0.785 0.008 103.79 <.0001 0.869
Annual Round Trips/Person 0.136 0.003 51.06 <.0001 0.426
Adjusted R-square 0.997
]
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Monte Carlo Simulation

Crystal Ball add-on software to Excel provided us the capability to run a randomized series of
scenarios (Monte Carlo simulation). We defined the scenarios by varying the six risk factor
values throughout their associated distributions for each forecast year. The revenue regression
equation for each forecast year was used to estimate the associated revenue for each scenario
and the relationship between revenue and ridership for each forecast year was used to estimate
the ridership. Crystal Ball was used to automate the simulation process by selecting
combinations of input values for the risk factors that were used to construct individual
scenarios Crystal Ball automatically calculated and recorded the results of thousands of runs for
the randomly selected input values. For each 2014 Business Plan forecast year, we ran a series
of 5,000 Monte Carlo simulations using Crystal Ball to obtain revenue probability distributions.
The results are presented in the next section.

Summary of Ridership and Revenue Forecasts

Range of Ridership and Revenue Forecasts

In Table 10, the ranges of forecast ridership and revenue along with the associated probabilities
of achieving those levels are shown for each forecast year. Forecasts for confidence levels from
5 percent to 95 percent are shown. For example, the 15 percent confidence level means that
there is a 15 percent chance that the revenue will be lower than the forecast value (or,
conversely, an 85 percent chance that it will be higher).

The HSRA should choose which confidence level best fits its needs for the business decisions
that it needs to make. The magnitude of the forecast range for both ridership and revenue
increases as the forecast year extends farther out in time, as expected. The range in revenue for
Year 2022 between the 5t and 95t percentiles is $1,041 million compared to $2,258 million in
Year 2040.

Table 10 Range of Ridership and Revenue (2013$) by Forecast Year (millions)

Likelihood that Year 2022 Year 2027 Year 2029 Year 2040
Ridership/
Revenue will . . . . . . . .
be less than Ridership | Revenue | Ridership | Revenue | Ridership | Revenue | Ridership | Revenue
Stated Value
5% 54 295.5 9.5 528.6 14.6 695.0 171 805.6
15% 7.2 399.4 124 689.6 19.0 901.7 219 1,030.6
25% 8.5 469.3 14.6 806.3 22.0 1,045.0 254 1,195.0
50% 11.4 626.5 19.0 1,053.4 29.1 1,379.0 33.3 1,567.9
75% 15.4 851.1 25.1 1,389.0 38.2 1,811.9 435 2,045.7
85% 18.2 1,002.9 29.5 1,632.2 43.7 2,074.6 49.9 2,349.8
95% 24.2 1,336.7 38.3 2,120.2 56.0 2,656.9 65.1 3,064.0
N
- 20 - CAMBRIDGE

SYSTEMATICS



—
CAMBRIDGE

Transportation leadership you can trust.

Figures 6 through 9 graphically display the cumulative probabilities of achieving specified
revenue levels for the various forecast years. The distributions are skewed to the right,
indicating that the values where there is 99 percent confidence that revenue will be lower than
the specified values are further away from the median (or 50t percentile) than the revenues for
the 1 percent confidence level. This is a result of the right skewed risk factor input distributions
for auto operating cost and airfare (see Figure 1 and 3).

Revenue 2022
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Figure 6 Range of Revenue for Year 2022 Initial Operating Segment HSR System
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Figure 7 Range of Revenue for Year 2027 Bay-to-Basin HSR System
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Figure 9 Range of Revenue for Year 2040 Phase 1 Blended HSR System

Contribution to Variance by each Risk Factor

Figures 10 through 13 show the contribution of each risk factors to the overall variance in
revenue for each of the scenarios. The Crystal Ball software approximates the sensitivity test
using the following approach:

—
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1. Calculate the rank correlation coefficients between every risk assumption and revenue;

2. Calculate the “Contribution to Variance” by squaring the correlation coefficients and
normalizing them to 100 percents.

Contribution bo W ariahce Yiew

Sensitivity: Revenue 2022

0.0% 20.0% 40.0% B0.0% 80.0%
| | | | |

HE=R Comst 2022
Trip Const 2022
Auto Op Cost 2022 (1.
* Regional Dist 2022 0.4%
* Growvth in HHs 2022 D.4|%
Airline Fares 2022 0.0%

Ridership_coef_2022 0.0%

* - Comrelated azsumption [zensitivity data may be misleading] A
Figure 10 Percent Contribution to Variance of each Risk Factor for Year 2022 Initial
Operating Segment

6 Crystal Ball's sensitivity analysis is only an approximation and is not precisely a variance
decomposition, and is known to provide inaccurate results for correlated assumptions. The risk factors
for growth in households and regional distribution of households are highly correlated (0.95 correlation
coefficient) in the Monte Carlo simulation runs. However, because of small correlations of these two
factors with revenue, they don't pose a significant issue in the sensitivity tests. Also, note that
“Ridership_coeff_...” factor refers to the regression equation constants.
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Contribution bo W ariahce Yiew
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Figure 11 Percent Contribution to Variance of each Risk Factor for Year 2027 Bay-to-Basin
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Figure 12 Percent Contribution to Variance of each Risk Factor for Year 2029 Phase 1 Blended
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Figure 13 Percent Contribution to Variance of each Risk Factor for Year 2040 Phase 1 Blended

The HSR constant is the overriding risk factor that contributes to the variance in revenue,
contributing between 84 and 91 percent of the variance, depending on the forecast year and
extent of the HSR project. The large sensitivity of the HSR constant to overall revenue is a
reflection the overall uncertainty of the attractiveness of HSR within the California
transportation environment as shown by the high standardized estimate of the coefficient
within the regression equations (shown in Table 6-9) and the estimated standard deviation for
the HSR constant distribution.

———
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Appendix A

California High Speed Rail Ridership and Revenue Forecasts for 2014 Business Plan
Potential Risk Factors and Implications for Forecasting

Risk Factor

Discussion

Future Expectations Risks

State Growth and Fiscal Changes:
(relative to CSTDM projections):

Overall Growth: 1) Increase or decrease in overall expected
level of households and/or employment; 2)Variation in
growth rates over time.

CS has documented substantial variation in long-range population and
employment forecasts over the last ten years. While current forecasts from
different sources show similarities in the 2040/2050 timeframe, the sources
differ as to growth rates in intervening years.

This is a significant uncertainty, and included in the risk analysis.

Household Income: Changes in the number of
high/middle/low income households throughout the State
or in certain regions.

This is an important consideration since interregional trip rates vary by
household income levels. Latest SANDAG forecasts show overall shift to
poorer households. Other demographers are projecting increase in unskilled
immigration combined with increased domestic out-migration of skilled
labor. The current CSTDM socioeconomic projections may be the most
optimistic scenario in terms of household income.

Capturing the range of potential permutations here, especially at the
regional level would be an enormous effort. We suggest that we keep this
analysis at the state level, and evaluate uniform changes in a sensitivity
evaluation.
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Risk Factor

Discussion

Household Size: Changes in number of residents or workers
per household.

This is an important consideration since long-distance trip rates vary
between household size and workers/household. There is high uncertainty
in household size characteristics given current state growth policies, aging
population, and large reductions in fertility rates among immigrant
populations. We also need to explore the extent to which household size is
correlated with household income.We recommend developing sensitivity
tests to evaluate the impacts of these factors.

Regional Spatial Distribution: Changes in planned
development densities and/ or housing types within major
metropolitan areas.

California MPOs are projecting increased development density and “jobs-
housing balance” as a result of SB-375. Much new growth is being assumed
in areas well-served by transit and in proximity to HST stations. Both
assumptions represent a departure from trend conditions.

We suggest one scenario as a sensitivity test that assumes continuation of
trend development patterns rather than increased development density and
jobs/housing balance throughout State. This will provide a sense of scale of
the impact on potential high-speed rail ridership.

Statewide Spatial Distribution: Different household and
employment allocation between San Diego, SCAG, San
Joaquin Valley, Bay Area, and Sacramento regions.

As noted above, State policy is trying to encourage more jobs-housing
balance, particularly for the San Joaquin Valley and Inland Empire. This
policy shift seems to be playing out in the MPO employment forecasts
(instead of households).

Since the HSR system will travel through the San Joaquin Valley, the risk
analysis model will vary the ratio of households and employment within San
Joaquin Valley to the rest of the State.

Job Types: Changes in job growth rates in key industries.

This is more subtle, and more difficult to evaluate in the risk analysis. If
deemed important, we can handle this risk with sensitivity tests.
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Risk Factor

Discussion

Changes in large California attractions:

e Beaches wiped out due to climate change or
manmade disaster (e.g., oil spill)

¢ Yosemite and other natural parks eliminated (or less
attractive) due to federal budget cuts or climate
change

e Disneyland closes

e Googleland and Facebookland open to public in
Silicon Valley

Over the course of a generation or two, it is reasonable to expect that
people’s tastes will change, and long-time popular attractions could go out
of business or reduce in size. Witness the rise and fall and rise of Atlantic
City, New Jersey.

While not impossible, we believe these risks are so speculative that they can
be ignored in the risk analysis, but can be suggested as considerations in our
report.

Transportation System Changes:

Automobile fuel cost

The cost of auto fuel is volatile both in short term and over the long term,
subject to the uncertainties of geology, global economics and geopolitics,
environmental concerns and others. Our previous analysis showed
considerable sensitivity to this variable. Therefore, we suggest that this
variable be incorporated directly into the risk analysis.
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Risk Factor

Discussion

Highway capacity

Highway capacity assumptions in key urban and interregional corridors
could be different than planned for any number of reasons, but in particular,
more or less funding than implied by adopted plans, increased O&M costs
which will leave less funding for new capacity, and policy shifts for or
against highway expansion.

Highway capacity assumptions affect peak and off-peak travel speeds,
which in turn affects each model step. Alternate highway capacities should
be evaluated as a sensitivity test.

Changing the highway network is a labor intensive exercise that then
requires re-running highway skims. In the past, we have tested the effect of
changing highway travel times by factoring up or down the travel time
skims. We will test the implications of differences in skims via sensitivity
tests

Security/screening changes resulting in longer or shorter
terminal times for air, high speed rail, or conventional rail.

Security screening on HST could increase terminal times. It could also
change the mode specific constant (due to increased inconvenience in
relation to air and conventional rail). Since HSR security screening is
outside of the HSRA’s control, we should include this in the risk analysis.

We believe the most important risk relates to potential screening for high
speed rail. Since the impact of terminal time is rolled into the constant, we
will incorporate this risk analysis into the overall testing of the high speed
rail constant described under model-related risks.

-29 .
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Risk Factor

Discussion

Airline ticket prices and frequency of service:

e Increase or decrease in ticket prices due to factors
such as fuel cost or competitive response.

¢ Increase or decrease in frequency due to competitive
response

e Changes in pricing policies, such as elimination of
baggage and other fees, or increases in such fees
(relative to today’s levels).

Since airlines compete directly with HSR service, and price is an important
factor. . We will use the range of airline ticket prices developed for the last
Business Plan by Geoff Gosling as a basis for this business plan. This
variable is incorporated directly into the risk analysis.

Similarly, airlines could choose to reduce or eliminate air service in certain
markets in response to rail competition. Its also possible that non-stop
service could be introduced between additional California city pairs as a
competitive response. Non-price related airline level-of-service changes will
be handled with sensitivity tests.

Changes to the automobile travel experience, such as:
¢ Readily available real time traveler information

e Driverless cars (e.g., Google Cars)

Real time traveler information has become common in the last few years.
Although it will help people make choices about when they might drive, we
do not expect it to be a big factor in choosing driving over traveling by rail.

Driverless cars, on the other hand, would significantly change the driving
experience, creating, in essence, a new travel mode. We have not included
driverless cars in our stated preference surveying efforts, so incorporating
this new mode into our analysis would not be possible for the 2014 Business
Plan. However, we should point this out as a potential risk factor in our
documentation (as we did for the 2012 Business Plan), and consider
sensitivity tests that change the attractiveness of automobile travel.
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Risk Factor

Discussion

Changes in HSR service characteristics, such as frequency,
price, or travel time, or introduction of airport style security

lines.

There could be a variety of reasons why the HSR service might not be
delivered as proposed in the 2014 Business Plan. While these are real risks,
our analysis will be cleaner and easier to understand if we assume the
service levels proposed by the HSRA and handle any variations in these
service levels as system alternatives that could be handled with sensitivity
tests.

However, some of the recent criticisms about the California High Speed Rail
project focus on disbelief that the HSRA can achieve the service
characteristics proposed. A separate analysis of the implications of less
favorable characteristics would be reasonable.

Model Related Risks

Overall amount of long distance travel. This aspect of
model-related risk is related almost exclusively to the trip

frequency model.

This could be reflected in the trip frequency values, and would be an
appropriate value to test in the risk analysis. It could be reflected by a
modification of the alternative specific constants for “make a trip.”

Amount of travel by trip purpose. This aspect of model-
related risk is also associated almost exclusively with the trip

frequency model.

Home-based long distance travel is forecast for four different trip purposes:
business, commute, recreation, and other. The variability in the percentage
of trips for each trip purpose found by different surveys suggests that either
the “true” distribution of trips by purpose are not adequately captured, or
that the distribution of trips by purpose varies over time. Since we are
accounting for the risk associated with the overall average number of annual
long-distance trips made by an individual, we do not think it is necessary to
add an additional risk factor varying the rate by trip purpose. This risk will
be handled via sensitivity analysis.
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Risk Factor

Discussion

Amount of travel induced by the introduction of HSR. This
aspect of model-related risk is related to both the trip
frequency and destination choice models

There are two components of induced travel on HSR: (1) new travel
resulting from increased accessibility afforded by HSR (we’ll call this) and
(2) new travel on HSR resulting from changes in destination choice due to
the increased accessibility afforded by HSR (we’ll call this). We'll call the
first type of induced travel “raw induced travel” and the second type
“destination induced travel.” We'll call the sum of the two, “total induced
travel.” While the amount of total induced travel can have high variability
within the forecasts, we expect that raw induced travel will comprise a small
percentage of overall HSR ridership. The impacts of raw induced travel can
be accounted for in the total amount of long distance travel analyzed
through changes in trip frequency.

The destination induced travel impacts are probably greater. However,
these impacts can probably be taken into account through the analysis of
different land use patterns. Alternatively, they might be analyzed through
varying the logsum coefficients in the destination choice models. A
sensitivity test might be warranted.

Share of travel that can be captured by HSR. This aspect of
model-related risk is related exclusively to the main mode
choice model.

Since HSR does not exist in the United States, the only basis for estimating
the relative attractiveness of HSR to other modes comes from the stated
preference survey. We cannot calibrate the HSR constant to actual HSR
service. Variation in the HSR constants would be appropriate in the risk
analysis.
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