APPENDIX D.2: TRACK SHIFTS WORKS REPORT AND EXHIBITS – ALTERNATIVE B
APPENDIX D.2. TRACK SHIFTS WORKS ALTERNATIVE B REPORT AND EXHIBITS

Index

1. ACTIONS ON THE SAN FRANCISCO TO SCOTT BOULEVARD SECTION. 1
1. **ACTIONS ON THE SAN FRANCISCO TO SCOTT BOULEVARD SECTION.**

The actions on tracks in the San Francisco to Scott Boulevard section are practically identical in A and B alternatives. The difference between one alternative and another can be found in the vicinity of the Brisbane workshops and the stations of Hayward Park, Hillsdale, Belmont and San Carlos. In these stations, Alternative A maintains the current tracks in its position while Alternative B adds two additional tracks to existing ones to facilitate overtaking, this segment is analyzed in an independent appendix (Appendix 6).

The collection of construction drawings that accompanies this document shows graphically the different degrees of impact to main tracks in the San Francisco to San Jose railway corridor. In them, the scope of the adaptation work for horizontal and vertical layout, impact on the catenary, turnouts, stations and at-grade crossings is shown.

In the present analysis, the San Francisco station does not undergo any modification, so it is assumed that there is no impact of the elements previously indicated.

As it is shown on the plans, the **changes in the horizontal** are localized, but require a great number of actions, with the largest amount of work needed at the following locations:

- Brisbane workshop-Bayshore station - Project Brisbane -
- South San Francisco station
- I-380 crossing near San Bruno station
- Millbrae station - Project Millbrae -
- Atherton station
- Passing tracks area

These actions stand out either because of the length of their modification or because of the size of their lateral displacement.

There are other minor actions that can be resolved by using track machinery and without having to provide new catenary poles.

The actions in the **longitudinal profile** have been classified by whether the track is raised or lowered.
The number of sections where the track is raised, is greater than the ones where a descent occurs, and may be solved by the addition of ballast and the use of track machinery, so the impact on the railway traffic will be minimal.

For the case when the track is lowered, the importance of this will be given by the degree of impact on the existing railway grade.

The impact on the **electrification system** due to a change in position of the contact wire in elevation are varies along the corridor and are of greater importance those associated with the lateral displacement.

Due to the large number of stations and diversions existing along the track, impacts to the existing **track turnouts** is significant. Changes to turnouts can be classified as those that will remain on the track but that will be adjusted in their horizontal and vertical position, those that will be dismantled and the installation of new turnouts.

All the adjustments that have to do with the turnouts will be carried out in parallel with the actions on the track where it is located. Generally, the actions in turnouts are made during the weekend, since these operations are complex and if any adversity occurs there is more time available to solve it.

There is a large number of turnouts where profile changes are required. The major changes in the horizontal plane are associated with the disassembly and assembly of new turnouts. All changes in the position of the turnouts have associated changes in the catenary.

The modification of the main layout and the remodeling of the track yard in stations, require corresponding modifications in the **platforms**, either in horizontal, vertical, or both.

These modifications affect every platform of all the stations in the San Francisco to Scott Boulevard corridor. The degree of impact varies, going from little adjustments in platforms to its complete rebuilding.

Regarding the at-grade crossings within the corridor, due to changes in the existing horizontal and vertical layout and the existing crossing characteristics that allow little tolerances to displacements, it is necessary to rebuild almost every at-grade crossings, except for Villa Terrace and Bellevue. The degree of modification can lead to adjustments in the corresponding road. This is especially true in profile, as is the case, at the 4th Avenue level crossing with vertical displacements close to 1 ft.
EXHIBITS