APPROVED JURISDICTIONAL DETERMINATION FORM U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): July 28, 2017

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: SPL-2010-00945-VCL - JD 2
C. PROJECT LOCATION AND BACKGROUND INFORMATION:

State: CA County/parish/borough: Kern County City: N/A
Center coordinates of site (lat/long in degree decimal format): Lat. $34.95424^{\circ} \mathbf{N}$, Long. $-118.32405^{\circ} \mathbf{W}$.
Universal Transverse Mercator: 379107 m E, 3868768 m N
Name of nearest waterbody: Oak Creek
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: N/A Name of watershed or Hydrologic Unit Code (HUC): Tropico Hill- Oak Creek, California, 1809020617
Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

Office (Desk) Determination. Date: July 25, 2017
Field Determination. Date(s):

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

Waters subject to the ebb and flow of the tide.
Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.
Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There Are no "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
a. Indicate presence of waters of U.S. in review area (check all that apply): ${ }^{1}$
$\square \quad$ TNWs, including territorial seas
Wetlands adjacent to TNWs
Relatively permanent waters ${ }^{2}$ (RPWs) that flow directly or indirectly into TNWs
Non-RPWs that flow directly or indirectly into TNWs
Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
Impoundments of jurisdictional waters
Isolated (interstate or intrastate) waters, including isolated wetlands
b. Identify (estimate) size of waters of the U.S. in the review area:

Non-wetland waters: linear feet: width (ft) and/or acres.
Wetlands: acres.
c. Limits (boundaries) of jurisdiction based on: Not Applicable.

Elevation of established OHWM (if known):
2. Non-regulated waters/wetlands (check if applicable): ${ }^{3}$

Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain:

The project area containsa total of 157 aquatic features. These features include Oak Creek, which is an intermittent stream in the southern Tehachapi foothills with four segments and an associated seasonal wetland in the study area, and becomes an ephemeral wash on the desert floor with five segments in the study area, before dissipating near Cactus Queen Mine. Additional

[^0]unnamed aquatic features in the study area include two intermittent streams segments, 18 seasonal wetland features, 33 ephemeral stream features, 54 ephemeral desert wash features, 10 forested wetland features, 28 claypan features, and two features formed through ponding in desert developed areas. Intermittent streams span a total of approximately 6,370 linear feet (1.21 miles) and cover approximately 1.70 acres. Seasonal wetlands cover approximately 2.85 acres. Ephemeral streams and desert wash features span a total of approximately 80,923 linear feet (15.3 miles), and cover approximately 10.67 acres. Forested wetland features cover approximately 2.76 acres. Claypan features cover approximately 0.29 acre. Features of ponding in developed areas cover approximately 0.18 acre. Labeled maps and tables of features and dimensions are provided in the Aquatic Resources Delineation Report, which identifies each feature according to which HUC-10 watershed it occurs within. A completed copy of the Aquatic Resources sheet in the Consolidated ORM Upload Workbook is also appended.

Oak Creek, crosses the study area in two separate places, first in the foothills as an intermittent stream with season wetland, features Oak Creek_0273-001 through 0273-004 and Oak Creek_SW_0272, and then as an ephemeral desert wash, features Oak Creek_0302, Oak Creek_0303, and Oak Creek_0305-001 through 0305-003, as it flows east and southeast outside the study area toward Rosamond Dry Lake.

Additional intermittent streams, Str_0263-001 and Str_0263-002; ephemeral streams, Str_0232, Str_0234 through _0235, Str_0237, Str_0241, Str_0256, Str_0274 through Str_0283, Str_0285 through _ 0288 and Str_0290; and desert washes Str_0289, Str_0291 through Str_ $\mathbf{0 3 0 1}$, Str_ $\mathbf{0 3 0 4}$, Str_ 0306 through Str_ $\mathbf{0 3 1 2}$, and Str_ $\mathbf{0 3 1 8}$ through Str_0328, also generally flow east - southeast outside the study area toward Rosamond Dry Lake. Where aquatic features intersect existing roads, they typically flow beneath roadways in culverts. Note that several features have multiple segments and are labeled as such in attached tables [e.g. 0326-001, 0326-002, etc.). Most of the ephemeral desert wash and ditch features dissipate and do not have defined channels that can be traced all the way down to the terminal point in the watershed. These features are similar to many other streams in the Antelope Valley Watershed that have well-defined channels where they originate in the mountains and foothills, but dissipate on the valley floor, where water movement during storms is primarily sheet flow.

Forested wetlands, features $F W$ _ 0233 , $F W _0246$ through $F W _0249$, FW_0251, FW_252, FW_0254, FW_0255, and FW_0265, and seasonal wetlands $S W _0238$ and $\quad 0239$, $S_{W} \bar{W}_{-} 0242$, SW_0245, $\bar{S} W_{-} 0250$ (11 segments), SW_0253-001 and -002 and SW_0261 occur along streams in the foothills in northern part of this study area. These aquatic features drain toward the aforementioned streams that ultimately flow toward Rosamond Dry Lake.

Ephemeral claypan features, $\mathrm{CP}_{-} 1000$ through $\mathrm{CP}_{-} 1004, \mathrm{CP}_{-} 1006$ through $\mathrm{CP}_{-} 1008, \mathrm{CP}_{-} 1010$ through $\mathrm{CP}_{-} 1011, \mathrm{CP}_{-} 1016$ through CP_1020, and $C P _1022$ through $C_{P} _1034$, are scattered in the southern portion of this the study area due to the relatively flat topography. These low-lying depressional features are ephemeral or intermittent, and typically hold water for a few weeks annually. Two areas of ponding in desert developed areas, features PD_1013 and PD_1021, that hold water for at least fourteen days after storms, were also identified in the study area. These aquatic features generally hold water for a few weeks similar to claypans.

All aquatic features within the study area are ephemeral or intermittent and are not used for commerce. The hydrologic connection to the low point in the Antelope Valley watershed, Rogers, Rosamond, and Buckhorn Dry Lakes, is primarily through sheet flow during storms. A review of topographic maps and watershed boundary datasets indicates that waters from the study area drain toward Rosamond Dry Lake.

There are no Traditional Navigable Waters (TNWs) or Relatively Permanent Waters (RPWs) in the study area, and the ephemeral and intermittent desert streams in the study area are not tributaries to RPWs or TNWs. A previous SWANCC watershed-level Approved JD for Antelope Valley (HUC10 \#s 1809020609 through 1809020624, excluding those portions of HUC12s 18090206151, 1901902061102, and 180902061103 that drain toward Lake Palmdale and its tributaries) determined that Rosamond, Buckhorn and Rogers Lakes, and their tributaries, (i.e. the Antelope Valley Watershed, excluding Lake Palmdale and tributaries to Lake Palmdale) are non-jurisdictional waters of the United States under SWANCC. This determination, SPL-2011-01084-SLP, dated June 7, 2013, found that these Antelope Valley waters are not tributary to either a TNW or an (a)(3) water and Rosamond, Buckhorn and Rogers Dry Lakes are not (a)(3) waters themselves. The Corps made this watershed conclusion because the Antelope Valley watershed is an isolated, intrastate watershed without any surface water related interstate commerce.

In summary, Antelope Valley Watershed is a closed basin situated within the western Mojave Desert, with a system of Rosamond, Buckhorn, and Rogers Dry Lakes as the central watershed terminus point. The watershed is roughly triangular-shaped, bordered on the southwest by the San Gabriel Mountains and the San Andreas Fault, on the northwest by the Tehachapi Mountains and the Garlock Fault, and on the east by hills and buttes generally following the boundary line between Los Angeles and San Bernardino Counties. Rosamond and Rogers Dry Lakes are the lowest elevational points of the watershed, with only slight differences in their individual lowest elevations (2,274 feet and 2,270 feet above sea level, respectively). Historically, these dry lake areas once comprised a single lake area (Lake Thompson) in the late Pleistocene era. The three dry lakes are located immediately south and southeast of Rosamond Hills and Bissell Hills, within the Edwards Air Force Base. The overall Antelope Valley Watershed analyzed in SPL-2011-01084-SLP occupies an area of approximately 2,400 square miles. Historically, land use of the watershed consisted primarily of agriculture, but population growth has led to increased residential, industrial, and commercial uses within both previous agricultural lands and undeveloped areas.

Watershed surface flows are generated by mountain snow pack melting and by storm events. Most surface water flows within Antelope Valley typically either infiltrate into the groundwater basin or evaporate. However, during large storm events surface water continues to flow to the central three dry lakes situated on Edwards Air Force Base (Rosamond Dry Lake, Buckhorn Dry

Lake, and Rogers Dry Lake). Storm water runoff from the surrounding mountains and hills is typically carried by ephemeral stream courses. Within the Valley floor, runoff is primarily carried by sheetflow. Surface flows that reach the dry lakes are typically are subject to evaporation rather than deep infiltration due to underlying clay soils.

Additionally, a previous approved jurisdictional determination was made for Oak Creek and some tributaries to Oak Creek (SPL-2012-00214-SLP, JD-1) on June 28, 2012. This determination found that the terminus for Oak Creek and its tributaries is Rosamond Dry Lake, and reiterated the non-jurisdictional status of tributaries to Rosamond Dry Lake.

Previously approved jurisdictional determinations have been made for tributaries to these dry lakes. When these lakes were analyzed in SPL-2011-01084-SLP, the Corps found no published commercial uses of the surface waters of any tributaries to Rosamond, Buckhorn and Rogers Dry Lakes, and determined that a review of aerial photographs (Google Earth) also did not depict surface water usage of any drainages tributary to the dry lakes. The Corps found that all tributaries to Rosamond, Buckhorn and Rogers Dry Lakes are not (a)(3) waters as defined by 33 C.F.R. section 328.3(a)(3)(i-iii). The previous determination found that since Rosamond, Buckhorn and Rogers Dry Lakes are intrastate isolated, waters without a surface water connection to commerce, all tributaries to Rosamond, Buckhorn and Rogers Dry Lakes as part of the overall watershed system are also isolated and additionally have no nexus to commerce. A review of current conditions and updated literature review found that conditions have not changed since the SPL-2011-01084-SLP determination for Antelope Valley.

Based on the information above, the subject drainages Oak Creek, two intermittent streams segments, 18 seasonal wetland features, 33 ephemeral stream features, 54 ephemeral desert wash features, 10 forested wetland features, 28 claypan features, and two desert ponds are NONJURISDICTIONAL waters of the United States, since the waters are NOT tributary to either a TNW or an (a)(3) water and are NOT (a)(3) waters themselves. The Corps makes such a conclusion since the waters are tribuatary to an isolated, intrastate dry lake.

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A. 1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A. 1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW:
Summarize rationale supporting determination:
2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent":

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody ${ }^{4}$ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B. 1 for the tributary, Section III.B. 2 for any onsite wetlands, and Section III.B. 3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
(i) General Area Conditions:
Watershed size: \quad Pick List
Drainage area: \quad Pick List
Average annual rainfall: \quad inches
Average annual snowfall: \quad inches
(ii) Physical Characteristics:
(a) Relationship with TNW:

Tributary flows directly into TNW.Tributary flows through Pick List tributaries before entering TNW.
Project waters are Pick List river miles from TNW.
Project waters are Pick List river miles from RPW.
Project waters are Pick List aerial (straight) miles from TNW.
Project waters are Pick List aerial (straight) miles from RPW.
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW^{5} :
Tributary stream order, if known:

[^1](b) General Tributary Characteristics (check all that apply): Tributary is:
\square Natural
Artificial (man-made). Explain:Manipulated (man-altered). Explain:
Tributary properties with respect to top of bank (estimate):

Average width: \quad feet	
Average depth:	feet
Average side slopes:	Pick List.

Primary tributary substrate composition (check all that apply):

\square Silts	\square Sands	\square Concrete
\square Cobbles	\square Gravel	\square Muck
\square Bedrock	\square Vegetation. Type/\% cover:	
\square Other. Explain:	.	

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain:
Presence of run/riffle/pool complexes. Explain:
Tributary geometry: Pick List
Tributary gradient (approximate average slope): \%
(c) Flow:

Tributary provides for: Pick List
Estimate average number of flow events in review area/year: Pick List
Describe flow regime:
Other information on duration and volume:
Surface flow is: Pick List. Characteristics:
Subsurface flow: Pick List. Explain findings:
\square Dye (or other) test performed:
Tributary has (check all that apply):
\square Bed and banks
$\square \mathrm{OHWM}^{6}$ (check all indicators that apply):

| \square clear, natural line impressed on the bank | \square the presence of litter and debris |
| :--- | :--- | :--- |
| \square changes in the character of soil | \square destruction of terrestrial vegetation |
| \square shelving | \square the presence of wrack line |

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
\square High Tide Line indicated by:
Mean High Water Mark indicated by:oil or scum line along shore objects \square survey to available datum;fine shell or debris deposits (foreshore)physical markings;physical markings/characteristicsvegetation lines/changes in vegetation types.
\square tidal gauges
other (list):

(iii) Chemical Characteristics:

Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain:
Identify specific pollutants, if known:

[^2](iv) Biological Characteristics. Channel supports (check all that apply):
\square Riparian corridor. Characteristics (type, average width):
\square Wetland fringe. Characteristics:
Habitat for:Federally Listed species. Explain findings:Fish/spawn areas. Explain findings:
\square Other environmentally-sensitive species. Explain findings:Aquatic/wildlife diversity. Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics:

Properties:
Wetland size: acres
Wetland type. Explain:
Wetland quality. Explain:
Project wetlands cross or serve as state boundaries. Explain:
(b) General Flow Relationship with Non-TNW:

Flow is: Pick List. Explain:
Surface flow is: Pick List Characteristics:

Subsurface flow: Pick List. Explain findings:Dye (or other) test performed:
(c) Wetland Adjacency Determination with Non-TNW:Directly abuttingNot directly abutting
\square Discrete wetland hydrologic connection. Explain:
\square Ecological connection. Explain:
Separated by berm/barrier. Explain:
(d) Proximity (Relationship) to TNW

Project wetlands are Pick List river miles from TNW.
Project waters are Pick List aerial (straight) miles from TNW.
Flow is from: Pick List.
Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain:
Identify specific pollutants, if known:
(iii) Biological Characteristics. Wetland supports (check all that apply):
\square Riparian buffer. Characteristics (type, average width):
\square Vegetation type/percent cover. Explain:
\square Habitat for:
\square Federally Listed species. Explain findings:
\square Fish/spawn areas. Explain findings:Other environmentally-sensitive species. Explain findings:Aquatic/wildlife diversity. Explain findings:
3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in the cumulative analysis: Pick List
Approximately () acres in total are being considered in the cumulative analysis.

For each wetland, specify the following:
Directly abuts? (Y/N) Size (in acres) \quad Directly abuts? (Y/N) Size (in acres)

Summarize overall biological, chemical and physical functions being performed:

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:
3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:TNWs: linear feet width (ft), Or, acres.
Wetlands adjacent to TNWs: acres.
2. RPWs that flow directly or indirectly into TNWs.
\square Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
\square Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):
\square Tributary waters: linear feet width (ft).
\square Other non-wetland waters: acres. Identify type(s) of waters: .
3. Non-RPWs ${ }^{8}$ that flow directly or indirectly into TNWs.
\square Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):
\square Tributary waters: linear feet width (ft).
\square Other non-wetland waters: acres.
Identify type(s) of waters: .
4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
\square Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:
\square Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

Provide acreage estimates for jurisdictional wetlands in the review area:
acres.
5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
\square Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.
6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.
7. Impoundments of jurisdictional waters. ${ }^{9}$

As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
Demonstrate that impoundment was created from "waters of the U.S.," or
\square Demonstrate that water meets the criteria for one of the categories presented above (1-6), orDemonstrate that water is isolated with a nexus to commerce (see E below).

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY): ${ }^{10}$

\square which are or could be used by interstate or foreign travelers for recreational or other purposes.
\square from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
\square which are or could be used for industrial purposes by industries in interstate commerce.
\square Interstate isolated waters. Explain:
\square Other factors. Explain:
Identify water body and summarize rationale supporting determination:

[^3]Provide estimates for jurisdictional waters in the review area (check all that apply):
\square Tributary waters: linear feet width (ft).Other non-wetland waters: acres. Identify type(s) of waters:Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

\square If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
\boxtimes Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
\boxtimes Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR).
Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain:
Other: (explain, if not covered above):
Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
\boxtimes Non-wetland waters (i.e., rivers, streams): 87,293 linear feet averaging 1 to 25 width (ft).
\square Lakes/ponds: acres.
\boxtimes Other non-wetland waters: 0.48 acres. List type of aquatic resource: Claypans 0.29 acres and Ponding in Developed Areas 0.18 acres.
Wetlands: 2.76 acres of forested wetlands and 2.85 acres of seasonal wetlands or a total of 5.61 acres.
Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply):

\square	Non-wetland waters (i.e., rivers, streams): linear feet, width (ft).
\square	Lakes/ponds: acres.
\square	Other non-wetland waters: acres. List type of aquatic resource:
\square	Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
\boxtimes Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Features are depicted on Map Sheets 79-132 in Appendix E of the submitted delineation..
\boxtimes Data sheets prepared/submitted by or on behalf of the applicant/consultant. Office concurs with data sheets/delineation report. Office does not concur with data sheets/delineation report.
\square Data sheets prepared by the Corps:
\square Corps navigable waters' study:
\boxtimes U.S. Geological Survey Hydrologic Atlas: See attached Watershed maps for NHD flowlines and HUC boundaries. \boxtimes USGS NHD data. \boxtimes USGS 8 and 12 digit HUC maps.
U U.S. Geological Survey map(s). Cite scale \& quad name: Willow Springs, Rosamond, Monolith, Tehachapi South7.5 minute quadrangles.
\square USDA Natural Resources Conservation Service Soil Survey. Citation:
\square National wetlands inventory map(s). Cite name:
\square State/Local wetland inventory map(s):
\square FEMA/FIRM maps:
100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929)
Photographs: \boxtimes Aerial (Name \& Date): NAIP Imagery 2005 and 2014 at 1-m resolution; Kern County Imagery 2010 and 2014 at a 1-foot resolution
\qquad \square Other (Name \& Date):
\boxtimes Previous determination(s). File no. and date of response letter: SPL-2011-01084-SLP, June 7, 2013.
\square Applicable/supporting case law:
\square Applicable/supporting scientific literature:
Other information (please specify):Aquatic Resources Delineation Report prepared by the applicant/consultant references additional materials; also Appendix E contains map sheets; Appendix F contains dimensions. HUC watershed maps of review areas with NHD Data provided by the applicant/consultant; general use of NAIP Imagery 2009, 2010, and 2012 at 1-m resolution; Kern County

Imagery 2008 at 1 -foot resolution; 2015 Site specific IR Imagery, 3-inch color pixel; Bing Aerial Imagery - multiple years (scale dependent); ESRI World Imagery (streaming service) multiple years (scale dependent); Google Earth Historic Photos (used for reference and includes portions from above listed sources).
B. ADDITIONAL COMMENTS TO SUPPORT JD:

Str_0337 R6	RIVERINE	0.05	ACRE	ISOLATE		34.85326116	-118.2284108
Str_0338 R6	RIVERINE	0.08	ACRE	ISOLATE		34.85270243	-118.2281414
CP_1000 PUB	DEPRESS	387	SQ_FT	ISOLATE		34.855082	-118.234067
CP_1001 PUB	DEPRESS	273	SQ_FT	ISOLATE		34.851852	-118.233856
CP_1002-001	PUB DEPRESS		17	SQ_FT	ISOLATE	- 34.851556	6-118.233568
CP_1003 PUB	DEPRESS	69	SQ_FT	ISOLATE		34.85431-118.233543	
CP_1004 PUB	DEPRESS	58	SQ_FT	ISOLATE		34.854673	-118.233538
CP_1006 PUB	DEPRESS	97	SQ_FT	ISOLATE		34.852411	-118.233504
CP_1007 PUB	DEPRESS	99	SQ_FT	ISOLATE		34.851946	-118.233501
CP_1008 PUB	DEPRESS	129	SQ_FT	ISOLATE		34.852011	-118.233489
CP_1010-001	PUB DEPRESS		205	SQ_FT	ISOLATE 34.851569		-118.233474
CP_1011 PUB	DEPRESS	132	SQ_FT	ISOLATE		34.855206	-118.233468
PD_1013 PUB	DEPRESS	45	SQ_FT	ISOLATE		34.856492	-118.233439
CP_1016 PUB	DEPRESS	1	SQ_FT	ISOLATE		34.856104	-118.232141
CP_1017 PUB	DEPRESS	41	SQ_FT	ISOLATE		34.856124	-118.232136
CP_1018 PUB	DEPRESS	54	SQ_FT	ISOLATE		34.856085	-118.232129
CP_1019 PUB	DEPRESS	50	SQ_FT	ISOLATE		34.856281	-118.232122
CP_1020 PUB	DEPRESS	591	SQ_FT	ISOLATE		34.856009	-118.232063
PD_1021 PUB	DEPRESS	7992	SQ_FT	ISOLATE		34.852037	-118.231826
CP_1022 PUB	DEPRESS	2782	SQ_FT	ISOLATE		34.853835	-118.231769
CP_1023 PUB	DEPRESS	147	SQ_FT	ISOLATE		34.853876	-118.231609
CP_1024 PUB	DEPRESS	40	SQ_FT	ISOLATE		34.854899	-118.230152
CP_1025 PUB	DEPRESS	81	SQ_FT	ISOLATE		34.854617	-118.229501
CP_1026 PUB	DEPRESS	68	SQ_FT	ISOLATE		34.854765	-118.229235
CP_1027 PUB	DEPRESS	236	SQ_FT	ISOLATE		34.85383-118.229232	
CP_1028 PUB	DEPRESS	263	SQ_FT	ISOLATE		34.853977	-118.229228
CP_1029 PUB	DEPRESS	3237	SQ_FT	ISOLATE		34.854342	-118.229167
CP_1030 PUB	DEPRESS	61	SQ_FT	ISOLATE		34.854471	-118.229114
CP_1031 PUB	DEPRESS	2838	SQ_FT	ISOLATE		34.854397	-118.229066
CP_1032 PUB	DEPRESS	629	SQ_FT	ISOLATE		34.853708	-118.228981
CP_1033 PUB	DEPRESS	182	SQ_FT	ISOLATE		34.85356-118.228966	
CP_1034 PUB	DEPRESS	10	SQ_FT	ISOLATE		34.851349	-118.226952.

SOURCE:ESRIUSGS Topographic Basemap (2016)) USGS 30m Hillshade (2015); Phase 48,
from CaHSRA (4/2016); Watershed Boundary DatasetNational Hydrography Dataset (2015).

BP HSR Mapped Streams with OHWM in
Study Area in the Tropico Hill -
Tropico Hill - Oak Creams with OHWM in Tropico Hill - Oak Creek Watershed Study Area \square Oak Creek Watershed \rightarrow Culvert

\longrightarrow Ephemeral Stream

\longrightarrow Intermittent Stream

Wetlands Study Area

(Project Footprint +250 ft Buffer)

$\longrightarrow \begin{aligned} & \text { Direction of flow based on } \\ & \text { NHD flowlines }\end{aligned}$

BP HSR Mapped Streams with OHWM in
Tropico Hill - Oak Creek Watershed Study Area $\quad \square$
Study Area in the Tropico Hill
Oak Creek Watershed

- Culver
\longrightarrow Ephemeral Stream
\longrightarrow Intermittent Stream
\square Tropico Hill-Oak Creek Watershed HUC-10

Wetlands Study Area

(Project Footprint +250 ft Buffer)

\longrightarrow Direction of flow based on
NHD flowlines

Tropico Hill-Oak Creek	Watershed HUC-10
WUC-12 Watersheds excluded	
from SPL-2011-01084-SLP	

Kern County 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Kern County 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.
California High-Speed Rail Project
Bakersfield to Palmdale Project Section: Aerial Photos to Support Approved Jurisdictional Determination for Tropico Hill - Oak Creek Watershed

Kern County 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Kern County 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Kern County 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Kern County 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Kern County 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Kern County 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Kern County 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Kern County 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Kern County 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Kern County 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Kern County 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Kern County 2010 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Kern County 2010 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Kern County 2010 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Kern County 2010 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Kern County 2010 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Kern County 2010 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Kern County 2010 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Kern County 2010 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Kern County 2010 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Kern County 2010 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Kern County 2010 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

[^4]

NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

[^5]

NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.
Aerial Sources: http://maps.co.kern.ca.us/arcgis/services/ and http://gis.apfo.usda.gov/arcgis/services/NAIP/
Retrieved November 4, 2016

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.
Aerial Sources: http://maps.co.kern.ca.us/arcgis/services/ and http://gis.apfo.usda.gov/arcgis/services/NAIP/

APPROVED JURISDICTIONAL DETERMINATION FORM U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): July 28, 2017

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: SPL-2010-00945-VCL - JD3
C. PROJECT LOCATION AND BACKGROUND INFORMATION:

State: CA County/parish/borough: Kern County City: N/A
Center coordinates of site (lat/long in degree decimal format): Lat. $35.096907^{\circ} \mathbf{N}$, Long. $-118.391170^{\circ} \mathbf{W}$.
Universal Transverse Mercator: 373200 m E, 3884676 m N
Name of nearest waterbody: Proctor Lake
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: N/A
Name of watershed or Hydrologic Unit Code (HUC): Proctor Lake, California - HUC12 \#181902060102
Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
\boxtimes Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

- Office (Desk) Determination. Date: July 25, 2017

Field Determination. Date(s):

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

Waters subject to the ebb and flow of the tide.
Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.
Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There Are no "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
a. Indicate presence of waters of U.S. in review area (check all that apply): ${ }^{1}$
$\square \quad$ TNWs, including territorial seas
Wetlands adjacent to TNWs
Relatively permanent waters ${ }^{2}$ (RPWs) that flow directly or indirectly into TNWs
Non-RPWs that flow directly or indirectly into TNWs
Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
Impoundments of jurisdictional waters
Isolated (interstate or intrastate) waters, including isolated wetlands
b. Identify (estimate) size of waters of the U.S. in the review area:

Non-wetland waters: linear feet: width (ft) and/or acres.
Wetlands: acres.
c. Limits (boundaries) of jurisdiction based on: Not Applicable.

Elevation of established OHWM (if known):
2. Non-regulated waters/wetlands (check if applicable): ${ }^{3}$
\boxtimes Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain:
The project area contains eight unnamed ephemeral streams spanning a total of approximately 9,722 linear feet (1.84 miles) and covering approximately 1.90 acres; two ditches that carry flow from some of these streams spanning a total of approximately 1,776 linear feet (0.34 miles) and covering approximately 0.21 acre; two seasonal wetlands totaling approximately 0.27 acre; and three basins totaling approximately 0.39 acre in the study area. The basins were constructed in uplands that do not capture waters of the U.S. Labeled maps and

[^6]tables of each of the above aquatic resources with dimensions are provided in the Aquatic Resources Delineation Report, which identifies each feature according to which HUC-12 watershed it occurs within. A completed copy of the Aquatic Resources sheet in the Consolidated ORM Upload Workbook is also appended.

There are no Traditional Navigable Waters (TNWs) or relatively permanent waters (RPWs) in the study area. Proctor Lake, an intermittent lake located east-northeast of the study area, is the low point in the watershed and terminus of surface water flows in this watershed. Unnamed ephemeral streams that cross through the study area, features Str_0211, Str_0213, Str_0215 through Str_0217, Str_0219, Str_0222 and Str_0229, originate in the hills southeast of the town of Tehachapi. Drainage is generally northeast toward Proctor Lake. In the hills, the channels are well-defined with an easily discerned bed and bank, and within the study area, the Ordinary High Water Mark was used to determine extent of these features. As topography flattens in the eastern Tehachapi Valley, these channels become swales, and the hydrologic connection to Proctor Lake includes sheet flow and overland flow. As the low point in the basin, Proctor Lake is the terminal receiving water for streams in the study area. In two locations, ditches constructed along roads capture water from these streams and transport it downstream and back into natural channels. Water from stream feature Str_0213 flows into a ditch, Ditch_0214, along Highline Road. Downstream of the study area, water from the ditch returns to a natural channel and flows toward Proctor Lake. \bar{A} second ditch, Ditch_0210, conveys water rerouted around an industrial building and under Jameson Road into a natural channel downstream, Str_0211, that flows offsite toward Proctor Lake. A seasonal wetland just south of East Tehachapi Boulevard, feature SW_204, is in a shallow depression within a swale. When the depression overflows, water flows toward Proctor Lake in a swale and then as overland flow. A second seasonal wetland, feature SW_0226, is supported by a hillside seep. Overflowing water would run downhill into stream feature Str_0222.

Additionally, three small basins (Basin_0203, Basin_0208, and Basin_0209) are present in the study area. Basin_0203 appears to be a detention basin, and Basin_0208 and Basin_0209 appear to be holding ponds for irrigation water. All three are constructed as depressions in the ground. In the event that these features overflowed, water would sheet flow toward surface channels and overland toward Proctor Lake.

Features crossing through the study area were evaluated along their entire length to their terminus. Primary land uses within the study area include ranching, farming, surface mines for cement and aggregate, and wind power generation facilities. Rural residential uses were also noted. The drainages and ditches reviewed are ephemeral along their entire length, flowing for only a short time during and after storms, with no discernable commercial or industrial uses. The two seasonal wetlands may have shallow surface water for several weeks, but do not support any discernable commercial or industrial uses, and are not navigable. The detention basin appears to serve as a stormwater control feature, while the irrigation ponds support cultivated agricultural uses. Water is not captured or used for mining or another interstate or foreign commerce.

A previous approved jurisdictional determination was made for tributaries to Proctor Lake with similar characteristics to those identified in this study area. On June 28, 2012, a determination was made for drainages in the SCE Antelope Transmission Line Project: TRTP Segment 3B area, that drain toward Proctor Lake (SPL-2012-00214-SLP, JD2). The previous determination found that Proctor Lake is the low point for drainages that fall within the watershed. It serves as the terminus for the ephemeral waters analyzed in the 2012 determination, as well as for all other waters within this isolated basin. All surface flows that enter Proctor Lake either evaporate or percolate into the groundwater table. Heavy pumping in areas south of Tehachapi and Monolith has altered the movement of groundwater due to the creation of a large pumping depression (See California Groundwater Bulletin 118). No perennial streams exist within the study area for the Proctor Lake watershed. The determination made in 2012 found that there are no published commercial uses of any of the surface waters and a review of current conditions indicated that this has not changed in the intervening years. A site visit conducted on July 18, 2016 confirmed that Proctor Lake is an intermittently dry lake, that is currently a meadow grazed by cattle, that does not support navigation, and does not support commercial or industrial uses of surface waters.

Proctor Lake, as the terminus for the project waters, is not a TNW. Moreover, Proctor Lake is not an (a)(3) water as defined by 33 C.F.R. section 328.3. Proctor Lake does not meet criteria (a)(3)(i-iii), as it: i) does not have use for surface water recreation or other purposes by foreign or interstate travelers, ii) does not have harvesting activities of fish or shellfish that may be sold in interstate or foreign commerce, and iii) does not have surface water industrial usage by industries in interstate commerce. Lastly, the project waters are not (a)(3) waters as defined by 33 C.F.R. section 328.3. The above is based upon the Aquatic Resources Delineation Report for the California High-Speed Rail Project, Bakersfield to Palmdale Section, and all other references listed in Section IV of this form, as well as the review of aerial photographs (Google Earth) that also did not show surface water usage of the subject waters or the dry lake terminus. Therefore, since Proctor Lake is an intrastate, isolated water without a surface water connection to commerce, all project waters as part of the overall Proctor Lake watershed system are also isolated and additionally have no nexus to commerce. Based on the above information, all subject waters (isolated nonRPWs) within the Proctor Lake watershed are non-jurisdictional, since the waters are not tributary to either a TNW or an (a)(3) water and are not (a)(3) waters themselves. Therefore, the eight segments of unnamed ephemeral streams, two segments of ditches, two seasonal wetlands, and three basins within the study are intrastate, isolated waters with no interstate or foreign commerce connection and therefore are not currently regulated.

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A. 1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A. 1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW:
Summarize rationale supporting determination:
2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent":

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody ${ }^{4}$ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B. 1 for the tributary, Section III.B. 2 for any onsite wetlands, and Section III.B. 3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
(i) General Area Conditions:
Watershed size: \quad Pick List
Drainage area: \quad Pick List
Average annual rainfall: \quad inches
Average annual snowfall: \quad inches
(ii) Physical Characteristics:
(a) Relationship with TNW:

Tributary flows directly into TNW.Tributary flows through Pick List tributaries before entering TNW.
Project waters are Pick List river miles from TNW.
Project waters are Pick List river miles from RPW.
Project waters are Pick List aerial (straight) miles from TNW.
Project waters are Pick List aerial (straight) miles from RPW.
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW^{5} :
Tributary stream order, if known:

[^7](b) General Tributary Characteristics (check all that apply): Tributary is:
\square Natural
Artificial (man-made). Explain:
Manipulated (man-altered). Explain:
Tributary properties with respect to top of bank (estimate):

Average width:	feet
Average depth:	feet
Average side slopes:	Pick List.

Primary tributary substrate composition (check all that apply):

\square Silts	\square Sands	\square Concrete
\square Cobbles	\square Gravel	\square Muck
\square Bedrock	\square Vegetation. Type/\% cover:	
\square Other. Explain:	.	

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain:
Presence of run/riffle/pool complexes. Explain:
Tributary geometry: Pick List
Tributary gradient (approximate average slope): \%
(c) Flow:

Tributary provides for: Pick List
Estimate average number of flow events in review area/year: Pick List
Describe flow regime:
Other information on duration and volume:
Surface flow is: Pick List. Characteristics:
Subsurface flow: Pick List. Explain findings:
\square Dye (or other) test performed:
Tributary has (check all that apply):
\square Bed and banks
$\square \mathrm{OHWM}^{6}$ (check all indicators that apply):

\square clear, natural line impressed on the bank	\square the presence of litter and debris	
\square changes in the character of soil	\square destruction of terrestrial vegetation	
\square shelving	\square the presence of wrack line	
\square vegetation matted down, bent, or absent	\square	sediment sorting
\square leaf litter disturbed or washed away	\square	scour
\square sediment deposition	\square multiple observed or predicted flow events	
\square water staining	\square	abrupt change in plant community
\square other (list):		
Discontinuous OHWM. ${ }^{7}$ Explain:		

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
\square High Tide Line indicated by:
Mean High Water Mark indicated by:oil or scum line along shore objects \square survey to available datum;fine shell or debris deposits (foreshore)physical markings;physical markings/characteristicsvegetation lines/changes in vegetation types.
\square tidal gauges
other (list):

(iii) Chemical Characteristics:

Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain:
Identify specific pollutants, if known:

[^8](iv) Biological Characteristics. Channel supports (check all that apply):
\square Riparian corridor. Characteristics (type, average width):
\square Wetland fringe. Characteristics:Habitat for:Federally Listed species. Explain findings:Fish/spawn areas. Explain findings:
\square Other environmentally-sensitive species. Explain findings:Aquatic/wildlife diversity. Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics:

Properties:
Wetland size: acres
Wetland type. Explain:
Wetland quality. Explain:
Project wetlands cross or serve as state boundaries. Explain:
(b) General Flow Relationship with Non-TNW:

Flow is: Pick List. Explain:
Surface flow is: Pick List Characteristics:

Subsurface flow: Pick List. Explain findings:Dye (or other) test performed:
(c) Wetland Adjacency Determination with Non-TNW:Directly abuttingNot directly abutting
\square Discrete wetland hydrologic connection. Explain:
\square Ecological connection. Explain:
Separated by berm/barrier. Explain:
(d) Proximity (Relationship) to TNW

Project wetlands are Pick List river miles from TNW.
Project waters are Pick List aerial (straight) miles from TNW.
Flow is from: Pick List.
Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain:
Identify specific pollutants, if known:
(iii) Biological Characteristics. Wetland supports (check all that apply):
\square Riparian buffer. Characteristics (type, average width):
\square Vegetation type/percent cover. Explain:
\square Habitat for:
\square Federally Listed species. Explain findings:
\square Fish/spawn areas. Explain findings:Other environmentally-sensitive species. Explain findings:Aquatic/wildlife diversity. Explain findings:
3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in the cumulative analysis: Pick List
Approximately () acres in total are being considered in the cumulative analysis.

For each wetland, specify the following:
Directly abuts? (Y/N) Size (in acres) Directly abuts? (Y/N) Size (in acres)

Summarize overall biological, chemical and physical functions being performed:

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:
3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:TNWs: linear feet width (ft), Or, acres.
Wetlands adjacent to TNWs: acres.
2. RPWs that flow directly or indirectly into TNWs.
\square Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
\square Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):
\square Tributary waters: linear feet width (ft).
\square Other non-wetland waters: acres. Identify type(s) of waters: .
3. Non-RPWs ${ }^{8}$ that flow directly or indirectly into TNWs.
\square Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):
\square Tributary waters: linear feet width (ft).
\square Other non-wetland waters: acres.
Identify type(s) of waters: .
4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
\square Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:
\square Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

Provide acreage estimates for jurisdictional wetlands in the review area:
acres.
5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
\square Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.
6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.
7. Impoundments of jurisdictional waters. ${ }^{9}$

As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
Demonstrate that impoundment was created from "waters of the U.S.," or
\square Demonstrate that water meets the criteria for one of the categories presented above (1-6), orDemonstrate that water is isolated with a nexus to commerce (see E below).

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY): ${ }^{10}$

\square which are or could be used by interstate or foreign travelers for recreational or other purposes.
\square from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
\square which are or could be used for industrial purposes by industries in interstate commerce.
\square Interstate isolated waters. Explain:
\square Other factors. Explain:
Identify water body and summarize rationale supporting determination:

[^9]Provide estimates for jurisdictional waters in the review area (check all that apply):
\square Tributary waters: linear feet width (ft).Other non-wetland waters: acres. Identify type(s) of waters:Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

\square If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
\boxtimes Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
\boxtimes Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR).
Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain:
Other: (explain, if not covered above):
Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
Non-wetland waters (i.e., rivers, streams): 9722 linear feet ranging from 5 to 20 feet in width (ft).
\square Lakes/ponds: acres.
\boxtimes Other non-wetland waters: 1.33 acres. List type of aquatic resource: Basins 0.39 acres, Ditches 0.21 acres, Streams 1.90 acres (9,722 linear feet).
W Wetlands: 0.27 acres.
Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply):
\square Non-wetland waters (i.e., rivers, streams): linear feet, width (ft).
\square Lakes/ponds: acres.
\square Other non-wetland waters: acres. List type of aquatic resource:
\square Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
\boxtimes Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Features are depicted on Map Sheets 66-79 in Appendix E of the submitted delineation. .
\square Data sheets prepared/submitted by or on behalf of the applicant/consultant.
Office concurs with data sheets/delineation report.
Office does not concur with data sheets/delineation report.
Data sheets prepared by the Corps:
\square Corps navigable waters' study:
U.S. Geological Survey Hydrologic Atlas:HUC12 boundaries and NHD flowlines are shown on the enclosed figures.. \boxtimes USGS NHD data. \boxtimes USGS 8 and 12 digit HUC maps.
\boxtimes U.S. Geological Survey map(s). Cite scale \& quad name: Monolith, Tehachapi North, and Tehachapi South 7.5-minute quadrangles.
\square USDA Natural Resources Conservation Service Soil Survey. Citation:
\square National wetlands inventory map(s). Cite name:
\square State/Local wetland inventory map(s):
\square FEMA/FIRM maps:
100-year Floodplain Elevation is: \quad (National Geodectic Vertical Datum of 1929)
\boxtimes Photographs: \boxtimes Aerial (Name \& Date): NAIP Imagery 2005 and 2014 at 1-m resolution; Kern County Imagery 2010 and 2014 at 1 -foot resolution.
or \boxtimes Other (Name \& Date):See attached Photos from 2015 and 2016 consultant-conducted field work.
\boxtimes Previous determination(s). File no. and date of response letter: SPL-2012-00214-SLP, JD2, dated June 28, 2012; additional previous determinations are cited in SPL-2012-00214-SLP, JD2.
\square Applicable/supporting case law:
\square Applicable/supporting scientific literature:
\boxtimes Other information (please specify): Aquatic Resources Delineation Report prepared by the applicant/consultant references additional materials; also note Appendix E contains map sheets; Appendix F contains dimensions. HUC watershed maps of review areas
with NHD Data provided by the applicant/consultant. Streaming imagery sources were reviewed, including Bing Aerial Imagery multiple years (scale dependent), ESRI World Imagery (streaming service) multiple years (scale dependent); Google Earth imagery. The California Groundwater Bulletin 118 report for the Tehachapi East groundwater basin (last updated 2004) was also reviewed (enclosed).
B. ADDITIONAL COMMENTS TO SUPPORT JD:

Waters_Name	Cowardin_Code	HGM_Code	Amount	Units	Waters_Type	Latitude	Longitude
Basin_0203	PUB	RIVERINE	0.20	ACRE	ISOLATE	35.125046	-118.412559
SW_0204	PEM	DEPRESS	0.04	ACRE	ISOLATE	35.122714	-118.383971
Basin_0208	PUB	RIVERINE	0.09	ACRE	ISOLATE	35.124114	-118.414622
Basin_0209	PUB	RIVERINE	0.10	ACRE	ISOLATE	35.122218	-118.413230
Ditch_0210	R6	RIVERINE	0.04	ACRE	ISOLATE	35.111278	-118.379226
Str_0211	R6	RIVERINE	0.06	ACRE	ISOLATE	35.111964	-118.378768
Str_0213	R6	RIVERINE	0.01	ACRE	ISOLATE	35.109555	-118.405087
Ditch_0214	R6	RIVERINE	0.17	ACRE	ISOLATE	35.109763	-118.402784
Str_0215-001	R6	RIVERINE	0.18	ACRE	ISOLATE	35.096715	-118.397401
Str_0215-002	R6	RIVERINE	0.35	ACRE	ISOLATE	35.102019	-118.397420
Str_0216-001	R6	RIVERINE	0.08	ACRE	ISOLATE	35.080638	-118.394665
Str_0216-002	R6	RIVERINE	0.03	ACRE	ISOLATE	35.082092	-118.394515
Str_0216-003	R6	R6	RIVERINE	0.14	ACRE	ISOLATE	35.095748
Str_0217	RIVERINE	0.16	ACRE	ISOLATE	35.097302	-118.390665	
Str_0219-001	R6	RIVERINE	0.04	ACRE	ISOLATE	35.084680	-118.391986
Str_0219-002	R6	RIVERINE	0.20	ACRE	ISOLATE	35.086047	-118.384014
Str_0222-001	R6	RIVERINE	0.12	ACRE	ISOLATE	35.081107	-118.381765
Str_0222-002	R6	RIVERINE	0.04	ACRE	ISOLATE	35.082118	-118.393911
SW_0226	PEM	R6	SLOPE	0.23	ACRE	ISOLATE	35.082256

BP HSR Mapped Streams with
OHWM in Proctor Lake Watershed
Study Area Study Area

\rightarrow Culvert

\longrightarrow Ephemeral Stream
\longrightarrow DitchStudy Area in Proctor Lake

Proctor Lake HUC-12 Watershed \square Other HUC-12 Watersheds \square Wetlands Study Area Wetlands Study Area
(Project Footprint +250 ft Buffer)

NHD Waterbodies
\longrightarrow Direction of flow based on
-.. Presumed Hydrologic Path
Presu

Proctor Lake Watershed Hydrologic Connectivity

BP HSR Mapped Streams with
OHWM in Proctor Lake
Watershed Study Area
\longrightarrow Culvert
\longrightarrow Ephemeral Stream
\longrightarrow Ditch

Study Area in Proctor	\square		
NHD Waterbodies			
Lake Watershed		\quad	Direction of flow based on
:---			
\squareProctor Lake HUC-12 Watershed			
\squareWetlands Study Area (Project Footprint +250 ft Buffer)			

Kern County 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 12 Watershed Boundaries.

Kern County 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 12 Watershed Boundaries.

Kern County 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 12 Watershed Boundaries.

Kern County 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 12 Watershed Boundaries.

Kern County 2010 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 12 Watershed Boundaries.

Kern County 2010 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 12 Watershed Boundaries.

Kern County 2010 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 12 Watershed Boundaries.

NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line- HUC 12 Watershed Boundaries.

NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line- HUC 12 Watershed Boundaries.

NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line- HUC 12 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line- HUC 12 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line- HUC 12 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line- HUC 12 Watershed Boundaries.
Aerial Sources: http://maps.co.kern.ca.us/arcgis/services/ and http://gis.apfo.usda.gov/arcgis/services/NAIP/

Retrieved December 5, 2016.

APPROVED JURISDICTIONAL DETERMINATION FORM U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): July 28, 2017

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: SPL-2010-00945-VCL-JD-4
C. PROJECT LOCATION AND BACKGROUND INFORMATION:

State: CA County/parish/borough: Kern and Los Angeles City: N/A
Center coordinates of site (lat/long in degree decimal format): Lat. $34.81623^{\circ} \mathbf{N}$, Long. $118.20510^{\circ} \mathbf{W}$.
Universal Transverse Mercator: 389784 m E, 3853326 m N
Name of nearest waterbody: Rosamond Lake
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: N/A
Name of watershed or Hydrologic Unit Code (HUC): Rosamond Lake, California, 1809020624
Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

\boxtimes Office (Desk) Determination. Date: July 25, 2017
Field Determination. Date(s):

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

Waters subject to the ebb and flow of the tide.
Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.
Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There Are no "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
a. Indicate presence of waters of U.S. in review area (check all that apply): ${ }^{1}$
$\square \quad$ TNWs, including territorial seas
Wetlands adjacent to TNWs
Relatively permanent waters ${ }^{2}$ (RPWs) that flow directly or indirectly into TNWs
Non-RPWs that flow directly or indirectly into TNWs
Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
Impoundments of jurisdictional waters
Isolated (interstate or intrastate) waters, including isolated wetlands
b. Identify (estimate) size of waters of the U.S. in the review area:

Non-wetland waters: linear feet: width (ft) and/or acres.
Wetlands: acres.
c. Limits (boundaries) of jurisdiction based on: Not Applicable.

Elevation of established OHWM (if known):
2. Non-regulated waters/wetlands (check if applicable): ${ }^{3}$
\boxtimes Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain:

Within the project area of the Rosamond Lake HUC 10, there are a total of 375 aquatic features. These features include 33 unnamed ephemeral desert stream features, $\mathbf{3 2 5}$ claypan features, and $\mathbf{1 7}$ features formed through ponding.

[^10]Ephemeral desert wash streams span a total of approximately $\mathbf{2 2 , 0 5 9}$ linear feet ($\mathbf{4 . 1 7} \mathbf{~ m i l e s}$) and cover approximately 2.81 acre and claypan features cover approximately 4.19 acres. Ponded features cover approximately 0.40 acre. Labeled maps and tables of features and dimensions are provided in the Aquatic Resources Delineation Report, which identifies each feature according to which HUC-10 watershed it occurs within. A completed copy of the Aquatic Resources sheet in the Consolidated ORM Upload Workbook is also appended.

The unnamed ephemeral desert washes, features Str_0339, Str_0346 through _0347, Str_0349 through Str_0370, Str_0372 and Str_0372, generally flow east within the study area. Water carried by these streams continues eastward outside the study area, flowing slowly toward Rosamond Dry Lake. Note that several aquatic features have multiple segments and are labeled as such in attached tables (e.g. Str_0358-001, Str_0358-002, etc.). Most of the ephemeral desert wash and ditch features dissipate and do not have defined channels that can be traced all the way down to the terminal point in the watershed. These features are similar to many other streams in the Antelope Valley Watershed that have well-defined channels where they originate in the mountains and foothills, but dissipate on the valley floor, where water movement during storms is primarily sheet flow.

Many ephemeral claypan features (CP_1002, CP_1005, CP_1009, CP_1010, CP_1012, CP_1035 through CP_1077, $\mathbf{C P} _111, \mathbf{C P}_{-} 1115$ through $\mathbf{C P}_{-} 1117, \overline{\mathbf{C}} \mathbf{P}_{-} 1119$ through $\mathbf{C} \overline{\mathbf{P}}_{-} 1129, \mathbf{C} \overline{\mathbf{P}}_{-} 1131$ through $\mathbf{C P}_{-} \overline{1171-005, ~ C P} \mathbf{P}_{-} 117 \overline{8}$ through CP_1302, CP_1313 through CP_1316, CP_1321 through CP_1323, CP_1325, CP_1328, CP_1332, CP_1334 through CP_1335, CP_1337 through CP_1339, CP_1341 through CP_1342-005, CP_1345, CP1346, CP3333-059 through CP3338-055, $\mathbf{C P}_{\mathbf{C}}$ 3340, and CP33344-062) are scattered throughout the study area due to the relatively flat topography. These low-lying depressional features are ephemeral or intermittent, and typically hold water for a few weeks annually.

Seventeen areas of ponding , features PD_1014, PD_1015, PD_1159, PD_1172 through 1174-08, PD_1176, PD_1177-001 and -002, and PD_1288, that hold water for at least fourteen days after storms, were also identified in the study area. These aquatic features generally hold water for a few weeks similar to claypans.

All aquatic features within the study area are ephemeral or intermittent and are not used for commerce. The hydrologic connection to the low point in the Antelope Valley watershed, Rogers, Rosamond, and Buckhorn Dry Lakes, is primarily through sheet flow during storms. A review of topographic maps and watershed boundary datasets indicates that waters from the study area drain toward Rosamond Dry Lake.

There are no Traditional Navigable Waters (TNWs) or Relatively Permanent Waters (RPWs) in the study area, and the ephemeral desert streams in the study area are not tributaries to RPWs or TNWs. A previous SWANCC watershed-level Approved JD for Antelope Valley (HUC10 \#s 1809020609 through 1809020624 , excluding those portions of HUC12s 18090206151, 1901902061102 , and 180902061103 that drain toward Lake Palmdale and its tributaries) determined that Rosamond, Buckhorn, and Rogers Dry Lakes, and their tributaries, (i.e. the Antelope Valley Watershed, excluding Lake Palmdale and tributaries to Lake Palmdale) are non-jurisdictional waters of the United States under SWANCC. This determination, SPL-2011-01084-SLP, dated June 7, 2013, found that these Antelope Valley waters are not tributary to either a TNW or an (a)(3) water and Rosamond, Buckhorn and Rogers Dry Lakes are not (a)(3) waters themselves. The Corps made this watershed conclusion because the Antelope Valley watershed is an isolated, intrastate watershed without any surface water related interstate commerce.

Previously approved jurisdictional determinations have been made for tributaries to these dry lakes. When these lakes were analyzed in SPL-2011-01084-SLP, the Corps found no published commercial uses of the surface waters of any tributaries to Rosamond, Buckhorn and Rogers Dry Lakes, and determined that a review of aerial photographs (Google Earth) also did not depict surface water usage of any drainages tributary to the dry lakes. The Corps found that all tributaries to Rosamond, Buckhorn, and Rogers Dry Lakes are not (a)(3) waters as defined by 33 C.F.R. section 328.3(a)(3)(i-iii). The previous determination found that since Rosamond, Buckhorn and Rogers Dry Lakes are intrastate isolated waters without a surface water connection to commerce, all tributaries to Rosamond, Buckhorn, and Rogers Dry Lakes as part of the overall watershed system are also isolated and additionally have no nexus to commerce. A review of current conditions and updated literature review found that conditions have not changed since the SPL-2011-01084-SLP determination for Antelope Valley.

The above is based upon the review of aerial photographs (Google Earth, accessed July 25, 2017) that also did not show surface water usage of the project drainages or the Rosamond Dry Lake terminus. Since the Rosamond Dry Lake is an intrastate, isolated water without a surface water connection to commerce (see prior AJD file No. SPL-2011-01084-SLP), the subject Project drainages 33 unnamed ephemeral desert stream features, $\mathbf{3 2 5}$ claypan features, and 17 ponded features, as part of the same overall system, are also isolated and additionally have no nexus to commerce.

Based on the information above, the subject drainages, 33 unnamed ephemeral desert stream features, $\mathbf{3 2 5}$ claypan features; and 17 desert ponds, are NONJURISDICTIONAL waters of the United States, since the waters are NOT tributary to either a TNW or an (a)(3) water and are NOT (a)(3) waters themselves. The Corps makes such a conclusion since the waters are tribuatary to an isolated, intrastate dry lake .

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A. 1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A. 1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW:
Summarize rationale supporting determination:
2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent":

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody ${ }^{4}$ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B. 1 for the tributary, Section III.B. 2 for any onsite wetlands, and Section III.B. 3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
(i) General Area Conditions:
Watershed size: \quad Pick List
Drainage area: \quad Pick List
Average annual rainfall: \quad inches
Average annual snowfall: \quad inches
(ii) Physical Characteristics:
(a) Relationship with TNW:

Tributary flows directly into TNW.Tributary flows through Pick List tributaries before entering TNW.
Project waters are Pick List river miles from TNW.
Project waters are Pick List river miles from RPW.
Project waters are Pick List aerial (straight) miles from TNW.
Project waters are Pick List aerial (straight) miles from RPW.
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW^{5} :
Tributary stream order, if known:

[^11](b) General Tributary Characteristics (check all that apply): Tributary is:
\square Natural
Artificial (man-made). Explain:Manipulated (man-altered). Explain:
Tributary properties with respect to top of bank (estimate):

Average width:	feet
Average depth:	feet
Average side slopes:	Pick List.

Primary tributary substrate composition (check all that apply):

\square Silts	\square Sands	\square Concrete
\square Cobbles	\square Gravel	\square Muck
\square Bedrock	\square Vegetation. Type/\% cover:	
\square Other. Explain:	\cdot	

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain:
Presence of run/riffle/pool complexes. Explain:
Tributary geometry: Pick List
Tributary gradient (approximate average slope): \%
(c) Flow:

Tributary provides for: Pick List
Estimate average number of flow events in review area/year: Pick List
Describe flow regime:
Other information on duration and volume:
Surface flow is: Pick List. Characteristics:
Subsurface flow: Pick List. Explain findings:
\square Dye (or other) test performed:
Tributary has (check all that apply):
\square Bed and banks
$\square \mathrm{OHWM}^{6}$ (check all indicators that apply):

\square clear, natural line impressed on the bank	\square the presence of litter and debris	
\square changes in the character of soil	\square destruction of terrestrial vegetation	
\square shelving	\square the presence of wrack line	
\square vegetation matted down, bent, or absent	\square sediment sorting	
\square leaf litter disturbed or washed away	\square	scour
\square sediment deposition	\square multiple observed or predicted flow events	
\square water staining	\square	abrupt change in plant community
\square other (list):		
Discontinuous OHWM. ${ }^{7}$ Explain:		

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
\square High Tide Line indicated by:
Mean High Water Mark indicated by:oil or scum line along shore objects \square survey to available datum;fine shell or debris deposits (foreshore)physical markings;physical markings/characteristicsvegetation lines/changes in vegetation types.
\square tidal gauges
other (list):

(iii) Chemical Characteristics:

Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain:
Identify specific pollutants, if known:

[^12](iv) Biological Characteristics. Channel supports (check all that apply):
\square Riparian corridor. Characteristics (type, average width):
\square Wetland fringe. Characteristics:
Habitat for:Federally Listed species. Explain findings:Fish/spawn areas. Explain findings:
\square Other environmentally-sensitive species. Explain findings:Aquatic/wildlife diversity. Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics:

Properties:
Wetland size: acres
Wetland type. Explain:
Wetland quality. Explain:
Project wetlands cross or serve as state boundaries. Explain:
(b) General Flow Relationship with Non-TNW:

Flow is: Pick List. Explain:
Surface flow is: Pick List Characteristics:

Subsurface flow: Pick List. Explain findings:Dye (or other) test performed:
(c) Wetland Adjacency Determination with Non-TNW:Directly abuttingNot directly abutting
\square Discrete wetland hydrologic connection. Explain:
\square Ecological connection. Explain:
Separated by berm/barrier. Explain:
(d) Proximity (Relationship) to TNW

Project wetlands are Pick List river miles from TNW.
Project waters are Pick List aerial (straight) miles from TNW.
Flow is from: Pick List.
Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain:
Identify specific pollutants, if known:
(iii) Biological Characteristics. Wetland supports (check all that apply):
\square Riparian buffer. Characteristics (type, average width):
\square Vegetation type/percent cover. Explain:
\square Habitat for:
\square Federally Listed species. Explain findings:
\square Fish/spawn areas. Explain findings:Other environmentally-sensitive species. Explain findings:Aquatic/wildlife diversity. Explain findings:
3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in the cumulative analysis: Pick List
Approximately () acres in total are being considered in the cumulative analysis.

For each wetland, specify the following:
Directly abuts? (Y/N) Size (in acres) \quad Directly abuts? (Y/N) Size (in acres)

Summarize overall biological, chemical and physical functions being performed:

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:
3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:TNWs: linear feet width (ft), Or, acres.
Wetlands adjacent to TNWs: acres.
2. RPWs that flow directly or indirectly into TNWs.
\square Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
\square Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):
\square Tributary waters: linear feet width (ft).
\square Other non-wetland waters: acres. Identify type(s) of waters: .
3. Non-RPWs ${ }^{8}$ that flow directly or indirectly into TNWs.
\square Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):
\square Tributary waters: linear feet width (ft).
\square Other non-wetland waters: acres.
Identify type(s) of waters: .
4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
\square Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:
\square Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

Provide acreage estimates for jurisdictional wetlands in the review area:
acres.
5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
\square Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.
6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.
7. Impoundments of jurisdictional waters. ${ }^{9}$

As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
Demonstrate that impoundment was created from "waters of the U.S.," or
\square Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
\square Demonstrate that water is isolated with a nexus to commerce (see E below).

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY): ${ }^{10}$

\square which are or could be used by interstate or foreign travelers for recreational or other purposes.
\square from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
\square which are or could be used for industrial purposes by industries in interstate commerce.
\square Interstate isolated waters. Explain:
\square Other factors. Explain:
Identify water body and summarize rationale supporting determination:

[^13]Provide estimates for jurisdictional waters in the review area (check all that apply):

Tributary waters: linear feet width (ft).Other non-wetland waters: acres. Identify type(s) of waters:Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

\square If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
\boxtimes Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
\boxtimes Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR).
Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain:
Other: (explain, if not covered above):
Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
இ Non-wetland waters (i.e., rivers, streams): 22,059 linear feet averaging 2 to $\mathbf{1 2}$ feet in width (ft).
\square Lakes/ponds: acres.
Other non-wetland waters: 4.59 acres. List type of aquatic resource: Claypans 4.19 acres and Ponding in Developed Areas 0.40 acre.
\square Wetlands: acres.
Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply):

\square	Non-wetland waters (i.e., rivers, streams): linear feet, width (ft).
\square	Lakes/ponds: acres.
\square	Other non-wetland waters: acres. List type of aquatic resource:
\square	Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Features are depicted on Map Sheets 132, 133, and 135-139 in Appendix E of the submitted delineation..
\boxtimes Data sheets prepared/submitted by or on behalf of the applicant/consultant.
Office concurs with data sheets/delineation report.
Office does not concur with data sheets/delineation report.Data sheets prepared by the Corps:
\square Corps navigable waters' study:
\boxtimes U.S. Geological Survey Hydrologic Atlas: See attached watershed maps for HUC boundaries and NHD flowlines. \boxtimes USGS NHD data. \boxtimes USGS 8 and 12 digit HUC maps.
U.S. Geological Survey map(s). Cite scale \& quad name: Rosamond 7.5 minute quadrangle.
\square USDA Natural Resources Conservation Service Soil Survey. Citation:
\square National wetlands inventory map(s). Cite name:
\square State/Local wetland inventory map(s):
\square FEMA/FIRM maps:
\square 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929)
\boxtimes Photographs: \boxtimes Aerial (Name \& Date): NAIP Imagery 2005 and 2014 at 1-m resolution; Kern County Imagery 2010 and 2014 as a 1-foot resolution; LA County Imagery 2011 and 2013 at a 1 -foot resolution.
or \square Other (Name \& Date):
Previous determination(s). File no. and date of response letter: SPL-2011-01084-SLP, June 7, 2013.
\square Applicable/supporting case law:
\square Applicable/supporting scientific literature:
\boxtimes Other information (please specify):Aquatic Resources Delineation Report prepared by the applicant/consultant references additional materials; also Appendix E contains map sheets; Appendix F contains dimensions. HUC watershed maps of review areas with NHD Data provided by the applicant/consultant; general use of NAIP Imagery 2009, 2010, and 2012 at 1-m resolution; LA County Imagery 2011, 2013, and 2015 at 1-foot resolution; 2015 Site specific IR Imagery, 3-inch color pixel; Bing Aerial Imagery - multiple
years (scale dependent); ESRI World Imagery (streaming service) multiple years (scale dependent); Google Earth Historic Photos (used for reference and includes portions from above listed sources).

B. ADDITIONAL COMMENTS TO SUPPORT JD:						
Waters_Name	Cow	__Code H	ode	Amount	Units	Waters_Type Latitude Longitude
Str_0339	R6	$\overline{\mathrm{R}}$ IVERINE	0.03	ACRE	ISOLATE	34.83997-118.22129
Str_0346a	R6	RIVERINE	0.004	ACRE	ISOLATE	34.82689-118.2149849
Str_0346c	R6	RIVERINE	0.002	ACRE	ISOLATE	34.82693-118.2131619
Str_0346e	R6	RIVERINE	0.003	ACRE	ISOLATE	34.82696-118.2129131
Str_0346g	R6	RIVERINE	0.04	ACRE	ISOLATE	34.82681-118.2119892
Str_0347	R6	RIVERINE	0.1	ACRE	ISOLATE	34.82607-118.21223
Str_0349	R6	RIVERINE	0.04	ACRE	ISOLATE	34.81761-118.20802
Str_0350-001	R6	RIVERINE	0.08	ACRE	ISOLATE	34.81841-118.20695
Str_0350-002	R6	RIVERINE	87	SQ_FT	ISOLATE	34.81955-118.20435
Str_-0351	R6	RIVERINE	0.03	ACRE	ISOLATE	34.82135-118.20691
Str_0352	R6	RIVERINE	0.03	ACRE	ISOLATE	34.81642-118.20669
Str_0353	R6	RIVERINE	0.01	ACRE	ISOLATE	$34.8182-118.20666$
Str_0354	R6	RIVERINE	0.36	ACRE	ISOLATE	34.81684-118.20455
Str_0355	R6	RIVERINE	0.39	ACRE	ISOLATE	34.81527-118.20419
Str_0356	R6	RIVERINE	87	SQ_FT	ISOLATE	34.81748-118.20343
Str_0357	R6	RIVERINE	0.35	ACRE	ISOLATE	34.81444-118.20332
Str_0358-001	R6	RIVERINE	0.06	ACRE	ISOLATE	34.81185-118.2031844
Str_0358-002	R6	RIVERINE	9	SQ_FT	ISOLATE	34.81207-118.2028815
Str_0359	R6	RIVERINE	0.03	ACRE	ISOLATE	34.81132-118.20297
Str_0360	R6	RIVERINE	0.04	ACRE	ISOLATE	34.81073-118.2028175
Str_0361-001	R6	RIVERINE	0.9	SQ_FT	ISOLATE	34.80954-118.2020589
Str_0361-002	R6	RIVERINE	0.02	ACRE	ISOLATE	34.80971-118.202211
Str_0362-001	R6	RIVERINE	0.1	ACRE	ISOLATE	34.81048-118.2021104
Str_0362-002	R6	RIVERINE	4	SQ_FT	ISOLATE	34.81079-118.2015221
Str_0363	R6	RIVERINE	0.04	ACRE	ISOLATE	34.81079-118.20171
Str_0364-001	R6	RIVERINE	131	SQ_FT	ISOLATE	$34.8121-118.20395$
Str_0364-002	R6	RIVERINE	0.15	ACRE	ISOLATE	34.81199-118.2015
Str_0365	R6	RIVERINE	0.11	ACRE	ISOLATE	34.81288-118.20118
Str_-0366	R6	RIVERINE	0.23	ACRE	ISOLATE	34.81079-118.20088
Str_0367	R6	RIVERINE	0.01	ACRE	ISOLATE	34.80807-118.19665
Str_0368	R6	RIVERINE	0.07	ACRE	ISOLATE	34.80453-118.20024
Str_0369-001	R6	RIVERINE	0.01	ACRE	ISOLATE	34.80657-118.20053
Str_0369-002	R6	RIVERINE	0.04	ACRE	ISOLATE	34.80632-118.19988
Str_0370	R6	RIVERINE	0.06	ACRE	ISOLATE	34.80521-118.19939
Str_0372	R6	RIVERINE	0.1	ACRE	ISOLATE	34.80503-118.1967
Str_0373	R6	RIVERINE	0.28	ACRE	ISOLATE	34.80456-118.19625
CP_1002-002	PUB	DEPRESS	16	SQ_FT	ISOLATE	34.85156-118.23357
CP_1005	PUB	DEPRESS	25	SQ_FT	ISOLATE	34.85124-118.23351
CP-1009	PUB	DEPRESS	800	SQ_FT	ISOLATE	34.85141-118.23348
CP_1010-002	PUB	DEPRESS	2	SQ_FT	ISOLATE	34.85157-118.23347
CP_1010-003	PUB	DEPRESS	4	SQ_FT	ISOLATE	34.85157-118.23347
CP_1012	PUB	DEPRESS	100	SQ_FT	ISOLATE	$34.851-118.23346$
PD_1014	PUB	RIVERINE	96	SQ_FT	ISOLATE	34.85093-118.23321
PD_1015	PUB	RIVERINE	164	SQ_FT	ISOLATE	34.85054-118.23293
CP_1035	PUB	DEPRESS	946	SQ_FT	ISOLATE	34.84258-118.23126
CP_1036	PUB	DEPRESS	3068	SQ_FT	ISOLATE	34.84922-118.23071
CP_1037	PUB	DEPRESS	3595	SQ_FT	ISOLATE	34.84924-118.22963
CP_1038	PUB	DEPRESS	499	SQ_FT	ISOLATE	34.84552-118.22936
CP_1039	PUB	DEPRESS	39	SQ_FT	ISOLATE	34.84949-118.22919
CP_1040	PUB	DEPRESS	2118	SQ_FT	ISOLATE	34.84965-118.22915
CP_1041	PUB	DEPRESS	58	SQ_FT	ISOLATE	34.84635-118.22911
CP_1042	PUB	DEPRESS	946	SQ_FT	ISOLATE	34.84965-118.22905
CP_1043	PUB	DEPRESS	606	SQ_FT	ISOLATE	34.84902-118.22901
CP_1044	PUB	DEPRESS	212	SQ_FT	ISOLATE	34.84642-118.22901
CP-1045	PUB	DEPRESS	541	SQ_FT	ISOLATE	34.84856-118.22901
CP_-1046	PUB	DEPRESS	143	SQ_FT	ISOLATE	34.84879-118.22901
CP_-1047	PUB	DEPRESS	1444	SQ_FT	ISOLATE	$34.8496-118.22893$
CP_1048	PUB	DEPRESS	286	SQ_FT	ISOLATE	34.84963-118.2285
CP_1049	PUB	DEPRESS	248	SQ_FT	ISOLATE	34.84949-118.2284
CP_1050	PUB	DEPRESS	129	SQ_FT	ISOLATE	34.84914-118.22832

CP_1051	PUB	DEPRESS	1299	SQ_FT	ISOLATE	34.84952-118.22825
CP_1052	PUB	DEPRESS	68	SQ_FT	ISOLATE	34.84934-118.22791
CP_1053	PUB	DEPRESS	301	SQ_FT	ISOLATE	34.84936-118.22777
CP_1054	PUB	DEPRESS	916	SQ_FT	ISOLATE	34.84417-118.2274
CP_1055	PUB	DEPRESS	3524	SQ_FT	ISOLATE	34.84435-118.22715
CP_1056	PUB	DEPRESS	59	SQ_FT	ISOLATE	34.84382-118.22628
CP_1057	PUB	DEPRESS	204	SQ_FT	ISOLATE	34.84422-118.22584
CP_1058	PUB	DEPRESS	70	SQ_FT	ISOLATE	34.84447-118.22535
CP_1059	PUB	DEPRESS	9	SQ_FT	ISOLATE	34.84514-118.22488
CP_1060	PUB	DEPRESS	91	SQ_FT	ISOLATE	34.84167-118.22906
CP_-1061	PUB	DEPRESS	154	SQ_FT	ISOLATE	34.8418 -118.22905
CP_1062	PUB	DEPRESS	203	SQ_FT	ISOLATE	34.84138-118.22905
CP_1063	PUB	DEPRESS	21	SQ_FT	ISOLATE	34.84174-118.22905
CP_1064	PUB	DEPRESS	101	SQ_FT	ISOLATE	34.84187-118.22904
CP_1065	PUB	DEPRESS	140	SQ_FT	ISOLATE	34.84195-118.22879
CP_1066	PUB	DEPRESS	5684	SQ_FT	ISOLATE	34.84196-118.2282
CP_1067	PUB	DEPRESS	52	SQ_FT	ISOLATE	34.84192-118.22814
CP_1068	PUB	DEPRESS	31	SQ_FT	ISOLATE	34.84193-118.22805
CP_1069	PUB	DEPRESS	683	SQ_FT	ISOLATE	34.84189-118.22785
CP_1070	PUB	DEPRESS	538	SQ_FT	ISOLATE	34.84175-118.22758
CP_1071	PUB	DEPRESS	17	SQ_FT	ISOLATE	34.84056-118.22608
CP_1072	PUB	DEPRESS	100	SQ_FT	ISOLATE	$34.842-118.22573$
CP_1073	PUB	DEPRESS	205	SQ_FT	ISOLATE	34.84216-118.2256
CP_1074	PUB	DEPRESS	821	SQ_FT	ISOLATE	34.84225-118.22549
CP_1075	PUB	DEPRESS	689	SQ_FT	ISOLATE	34.84241-118.22527
CP_1076	PUB	DEPRESS	474	SQ_FT	ISOLATE	34.84244-118.22501
CP_1077	PUB	DEPRESS	199	SQ_FT	ISOLATE	34.84244-118.22374
CP_1111	PUB	DEPRESS	634	SQ_FT	ISOLATE	34.82642-118.21469
CP_1115	PUB	DEPRESS	6562	SQ_FT	ISOLATE	$34.8259-118.21371$
CP_1116	PUB	DEPRESS	161	SQ_FT	ISOLATE	$34.8252-118.2131$
CP_1117	PUB	DEPRESS	9	SQ_FT	ISOLATE	34.82657-118.21305
CP_1119	PUB	DEPRESS	1	SQ_FT	ISOLATE	34.82563-118.21291
CP_1120	PUB	DEPRESS	303	SQ_FT	ISOLATE	34.82653-118.21288
CP_1121-001	PUB	DEPRESS	0.1	SQ_FT	ISOLATE	34.82421-118.21269
CP_1121-002	PUB	DEPRESS	30937	SQ_FT	ISOLATE	34.82421-118.21269
CP_-1122	PUB	DEPRESS	0.1	SQ_FT	ISOLATE	34.82383-118.21262
CP_1123	PUB	DEPRESS	5244	SQ_FT	ISOLATE	34.82372-118.21251
CP_1124	PUB	DEPRESS	26	SQ_FT	ISOLATE	34.82544-118.21243
CP_1125	PUB	DEPRESS	2	SQ_FT	ISOLATE	34.82557-118.21242
CP_1126-001	PUB	DEPRESS	2	SQ_FT	ISOLATE	34.82567-118.21241
CP_1126-002	PUB	DEPRESS	14168	SQ_FT	ISOLATE	34.82567-118.21241
CP_1127-001	PUB	DEPRESS	20	SQ_FT	ISOLATE	34.82693-118.21241
CP_1127-002	PUB	DEPRESS	81	SQ_FT	ISOLATE	34.82693-118.21241
CP_1127-003	PUB	DEPRESS	48	SQ_FT	ISOLATE	34.82693-118.21241
CP_-1128	PUB	DEPRESS	10	SQ_FT	ISOLATE	34.8254-118.21225
CP_1129-001	PUB	DEPRESS	29	SQ_FT	ISOLATE	34.82684-118.21215
CP_1129-002	PUB	DEPRESS	5	SQ_FT	ISOLATE	34.82684-118.21215
CP_1129-003	PUB	DEPRESS	10	SQ_FT	ISOLATE	34.82684-118.21215
CP_1129-004	PUB	DEPRESS	2	SQ_FT	ISOLATE	34.82684-118.21215
CP_1129-005	PUB	DEPRESS	224	SQ_FT	ISOLATE	34.82684-118.21215
CP_-1131	PUB	DEPRESS	612	SQ_FT	ISOLATE	34.82482-118.21181
CP_1132	PUB	DEPRESS	22	SQ_FT	ISOLATE	34.82488-118.21176
CP_-1133	PUB	DEPRESS	199	SQ_FT	ISOLATE	34.82306-118.21155
CP_1134	PUB	DEPRESS	2209	SQ_FT	ISOLATE	34.82431-118.2115
CP_1135	PUB	DEPRESS	3341	SQ_FT	ISOLATE	$34.825-118.21148$
CP_1137	PUB	DEPRESS	50	SQ_FT	ISOLATE	34.82423-118.21143
CP_1138	PUB	DEPRESS	27	SQ_FT	ISOLATE	34.82646-118.2114
CP_1139	PUB	DEPRESS	8	SQ_FT	ISOLATE	34.82641-118.21136
CP_1140	PUB	DEPRESS	93	SQ_FT	ISOLATE	34.82436-118.21132
CP_-1141	PUB	DEPRESS	214	SQ_FT	ISOLATE	34.82316-118.21132
CP_1142	PUB	DEPRESS	34	SQ_FT	ISOLATE	34.82501-118.21126
CP_1143-001	PUB	DEPRESS	51	SQ_FT	ISOLATE	34.82638-118.21125
CP_1143-002	PUB	DEPRESS	3	SQ_FT	ISOLATE	34.82638-118.21125
CP_1143-003	PUB	DEPRESS	1	SQ_FT	ISOLATE	34.82638-118.21125
CP_1143-004	PUB	DEPRESS	407	SQ_FT	ISOLATE	34.82638-118.21125
CP_1143-005	PUB	DEPRESS	145	SQ_FT	ISOLATE	34.82638-118.21125

CP_1144	PUB	DEPRESS	111	SQ_FT	ISOLATE	34.82465-118.21094
CP_1145	PUB	DEPRESS	369	SQ_FT	ISOLATE	34.82462-118.21063
CP-1146	PUB	DEPRESS	40	SQ_FT	ISOLATE	34.8247 -118.21059
CP_1147-001	PUB	DEPRESS	13	SQ_FT	ISOLATE	34.82611-118.21051
CP_1147-002	PUB	DEPRESS	0.1	SQ_FT	ISOLATE	34.82611-118.21051
CP_1147-003	PUB	DEPRESS	67	SQ_FT	ISOLATE	34.82611-118.21051
CP_1148	PUB	DEPRESS	196	SQ_FT	ISOLATE	34.82609-118.21046
CP_1149	PUB	DEPRESS	773	SQ_FT	ISOLATE	34.82537-118.21045
CP_1150	PUB	DEPRESS	10	SQ_FT	ISOLATE	34.82599-118.21033
CP_1151-001	PUB	DEPRESS	2	SQ_FT	ISOLATE	34.82604-118.21032
CP_1151-002	PUB	DEPRESS	1	SQ_FT	ISOLATE	34.82604-118.21032
CP_1151-003	PUB	DEPRESS	0.1	SQ_FT	ISOLATE	34.82601-118.21032
CP_1151-004	PUB	DEPRESS	128	SQ_FT	ISOLATE	34.82601-118.21032
CP_1152	PUB	DEPRESS	107	SQ_FT	ISOLATE	34.82376-118.20885
CP_1153	PUB	DEPRESS	44	SQ_FT	ISOLATE	34.82299-118.21152
CP_1154	PUB	DEPRESS	6	SQ_FT	ISOLATE	34.82183-118.21133
CP_1155	PUB	DEPRESS	6	SQ_FT	ISOLATE	34.82184-118.21132
CP-1156	PUB	DEPRESS	37	SQ_FT	ISOLATE	34.82186-118.2113
CP_1157	PUB	DEPRESS	788	SQ_FT	ISOLATE	34.82252-118.2113
CP-1158	PUB	DEPRESS	35	SQ_FT	ISOLATE	34.82185-118.21103
PD_1159	PUB	RIVERINE	56	SQ_FT	ISOLATE	34.82047-118.21016
CP-1160	PUB	DEPRESS	1008	SQ_FT	ISOLATE	34.82025-118.21012
CP_1161	PUB	DEPRESS	18	SQ_FT	ISOLATE	34.82203-118.20953
CP_1162	PUB	DEPRESS	5	SQ_FT	ISOLATE	34.82202-118.2095
CP_1163	PUB	DEPRESS	2292	SQ_FT	ISOLATE	34.82205-118.20931
CP_1164	PUB	DEPRESS	131	SQ_FT	ISOLATE	$34.8201-118.20917$
CP_-1165	PUB	DEPRESS	94	SQ_FT	ISOLATE	34.81996-118.2091
CP_1166	PUB	DEPRESS	507	SQ_FT	ISOLATE	34.82159-118.2086
CP-1167	PUB	DEPRESS	1102	SQ_FT	ISOLATE	$34.8212-118.20844$
CP-1168	PUB	DEPRESS	384	SQ_FT	ISOLATE	34.82143-118.20823
CP_1169	PUB	DEPRESS	892	SQ_FT	ISOLATE	34.82126-118.20818
CP_1170-001	PUB	DEPRESS	10	SQ_FT	ISOLATE	$34.8187-118.20817$
CP_1170-002	PUB	DEPRESS	0.1	SQ_FT	ISOLATE	$34.8187-118.20817$
CP_1171-001	PUB	DEPRESS	27	SQ_FT	ISOLATE	$34.8186-118.20799$
CP_1171-002	PUB	DEPRESS	0.1	SQ_FT	ISOLATE	$34.8186-118.20799$
CP_1171-003	PUB	DEPRESS	184	SQ_FT	ISOLATE	$34.8186-118.20799$
CP_1171-004	PUB	DEPRESS	8	SQ_FT	ISOLATE	$34.8186-118.20799$
CP_1171-005	PUB	DEPRESS	13	SQ_FT	ISOLATE	$34.8186-118.20799$
PD_1172	PUB	RIVERINE	1040	SQ_FT	ISOLATE	34.82051-118.20658
PD_1173	PUB	RIVERINE	7	SQ_FT	ISOLATE	34.82093-118.20635
PD_1174-001	PUB	RIVERINE	1	SQ_FT	ISOLATE	34.82096-118.20633
PD_1174-002	PUB	RIVERINE	12	SQ_FT	ISOLATE	34.82096-118.20633
PD_1174-003	PUB	RIVERINE	8	SQ_FT	ISOLATE	34.82096-118.20633
PD_1174-004	PUB	RIVERINE	2610	SQ_FT	ISOLATE	34.82096-118.20633
PD_1174-005	PUB	RIVERINE	316	SQ_FT	ISOLATE	34.82096-118.20633
PD_1174-006	PUB	RIVERINE	406	SQ_FT	ISOLATE	34.82096-118.20633
PD_1174-007	PUB	RIVERINE	1672	SQ_FT	ISOLATE	34.82096-118.20633
PD_1174-008	PUB	RIVERINE	313	SQ_FT	ISOLATE	34.82096-118.20633
CP_1175	PUB	DEPRESS	8723	SQ_FT	ISOLATE	34.81539-118.206
PD_1176	PUB	RIVERINE	360	SQ_FT	ISOLATE	34.82026-118.20597
PD_1177-001	PUB	RIVERINE	7	SQ_FT	ISOLATE	34.82091-118.20595
PD_1177-002	PUB	RIVERINE	64	SQ_FT	ISOLATE	34.82091-118.20595
CP_1178	PUB	DEPRESS	1080	SQ_FT	ISOLATE	34.81876-118.20592
CP_1179-001	PUB	DEPRESS	0.1	SQ_FT	ISOLATE	34.81839-118.2059
CP_1179-002	PUB	DEPRESS	244	SQ_FT	ISOLATE	34.81839-118.2059
CP_1179-003	PUB	DEPRESS	55	SQ_FT	ISOLATE	34.81839-118.2059
CP_1179-004	PUB	DEPRESS	76	SQ_FT	ISOLATE	34.81839-118.2059
CP_1180	PUB	DEPRESS	69	SQ_FT	ISOLATE	34.81875-118.20574
CP_1181	PUB	DEPRESS	160	SQ_FT	ISOLATE	34.81821-118.20572
CP_1182	PUB	DEPRESS	216	SQ_FT	ISOLATE	34.81837-118.2057
CP_1183	PUB	DEPRESS	135	SQ_FT	ISOLATE	34.81835-118.20558
CP_1184-001	PUB	DEPRESS	0.1	SQ_FT	ISOLATE	34.81867-118.20557
CP_1184-002	PUB	DEPRESS	32	SQ_FT	ISOLATE	34.81867-118.20557
CP_-1185	PUB	DEPRESS	58	SQ_FT	ISOLATE	$34.8176-118.20553$
CP_1186-001	PUB	DEPRESS	0.1	SQ_FT	ISOLATE	34.81868-118.20542
CP-1186-002	PUB	DEPRESS	150	SQ_FT	ISOLATE	34.81868-118.20542

CP_1187-001	PUB	DEPRESS	5	SQ_FT	ISOLATE	34.81893-118.2054
CP_1187-002	PUB	DEPRESS	31	SQ_FT	ISOLATE	34.81893-118.2054
CP_1188-001	PUB	DEPRESS	8	SQ_FT	ISOLATE	34.81913-118.20505
CP_1188-002	PUB	DEPRESS	19	SQ_FT	ISOLATE	34.81913-118.20505
CP_1189	PUB	DEPRESS	170	SQ_FT	ISOLATE	34.81629-118.20495
CP_-1190	PUB	DEPRESS	119	SQ_FT	ISOLATE	34.81695-118.20476
CP_-1191	PUB	DEPRESS	61	SQ_FT	ISOLATE	$34.8172-118.20367$
CP_-1192	PUB	DEPRESS	71	SQ_FT	ISOLATE	34.81582-118.20347
CP_-1193	PUB	DEPRESS	624	SQ_FT	ISOLATE	34.81724-118.20345
CP_1194-001	PUB	DEPRESS	136	SQ_FT	ISOLATE	34.81676-118.20343
CP_1194-002	PUB	DEPRESS	6	SQ_FT	ISOLATE	34.81676-118.20343
CP_1194-003	PUB	DEPRESS	5	SQ_FT	ISOLATE	34.81676-118.20343
CP_1195	PUB	DEPRESS	111	SQ_FT	ISOLATE	34.81703-118.20337
CP_-1196	PUB	DEPRESS	9	SQ_FT	ISOLATE	34.81682-118.2033
CP_1197	PUB	DEPRESS	466	SQ_FT	ISOLATE	34.81406-118.20538
CP_-1198	PUB	DEPRESS	1978	SQ_FT	ISOLATE	34.81367-118.20504
CP_-1199	PUB	DEPRESS	2294	SQ_FT	ISOLATE	34.81349-118.20448
CP_1200	PUB	DEPRESS	1313	SQ_FT	ISOLATE	34.81308-118.20367
CP_1201	PUB	DEPRESS	8	SQ_FT	ISOLATE	34.81167-118.20366
CP_1202-001	PUB	DEPRESS	13	SQ_FT	ISOLATE	34.81167-118.20339
CP_1202-002	PUB	DEPRESS	22	SQ_FT	ISOLATE	34.81167-118.20339
CP_1202-003	PUB	DEPRESS	7	SQ_FT	ISOLATE	34.81167-118.20339
CP_1202-004	PUB	DEPRESS	729	SQ_FT	ISOLATE	34.81167-118.20339
CP_1202-005	PUB	DEPRESS	0.1	SQ_FT	ISOLATE	34.81167-118.20339
CP_1202-006	PUB	DEPRESS	0.1	SQ_FT	ISOLATE	34.81167-118.20339
CP_1203	PUB	DEPRESS	29	SQ_FT	ISOLATE	34.81441-118.20334
CP_1204	PUB	DEPRESS	17	SQ_FT	ISOLATE	34.81089-118.20314
CP_1205	PUB	DEPRESS	383	SQ_FT	ISOLATE	34.81166-118.20276
CP_1206	PUB	DEPRESS	952	SQ_FT	ISOLATE	34.81154-118.20276
CP_1207	PUB	DEPRESS	15	SQ_FT	ISOLATE	34.8109 -118.20259
CP_1208-001	PUB	DEPRESS	45	SQ_FT	ISOLATE	34.81223-118.20257
CP_1208-002	PUB	DEPRESS	10	SQ_FT	ISOLATE	34.81223-118.20257
CP_1209-001	PUB	DEPRESS	0.1	SQ_FT	ISOLATE	34.81227-118.20254
CP_1209-002	PUB	DEPRESS	25	SQ_FT	ISOLATE	34.81227-118.20254
CP_1210-001	PUB	DEPRESS	1868	SQ_FT	ISOLATE	34.81215-118.20245
CP_1210-002	PUB	DEPRESS	445	SQ_FT	ISOLATE	34.81215-118.20245
CP_1211	PUB	DEPRESS	22	SQ_FT	ISOLATE	34.81239-118.20243
CP_1212	PUB	DEPRESS	20	SQ_FT	ISOLATE	34.81157-118.20243
CP_1213	PUB	DEPRESS	8	SQ_FT	ISOLATE	34.81173-118.20242
CP_1214	PUB	DEPRESS	40	SQ_FT	ISOLATE	34.80991-118.20242
CP_1215	PUB	DEPRESS	72	SQ_FT	ISOLATE	34.81225-118.20234
CP_1216	PUB	DEPRESS	30	SQ_FT	ISOLATE	34.80992-118.20232
CP_1217	PUB	DEPRESS	160	SQ_FT	ISOLATE	34.81129-118.20224
CP_1218	PUB	DEPRESS	10	SQ_FT	ISOLATE	34.81112-118.2022
CP_1219	PUB	DEPRESS	108	SQ_FT	ISOLATE	34.81067-118.2022
CP_1220	PUB	DEPRESS	36	SQ_FT	ISOLATE	34.81227-118.20215
CP_1221	PUB	DEPRESS	148	SQ_FT	ISOLATE	34.81113-118.20213
CP_1222	PUB	DEPRESS	410	SQ_FT	ISOLATE	34.81485-118.20205
CP_1223	PUB	DEPRESS	13	SQ_FT	ISOLATE	34.81238-118.20198
CP_1224-001	PUB	DEPRESS	8	SQ_FT	ISOLATE	34.81216-118.20198
CP_1224-002	PUB	DEPRESS	66	SQ_FT	ISOLATE	34.81216-118.20198
CP_1225	PUB	DEPRESS	38	SQ_FT	ISOLATE	34.81106-118.20197
CP_1226	PUB	DEPRESS	16	SQ_FT	ISOLATE	34.81239-118.20196
CP_1227	PUB	DEPRESS	19	SQ_FT	ISOLATE	34.81211-118.20196
CP_1228	PUB	DEPRESS	56	SQ_FT	ISOLATE	34.81215-118.20194
CP_1229	PUB	DEPRESS	12	SQ_FT	ISOLATE	34.81104-118.20193
CP_1230	PUB	DEPRESS	37	SQ_FT	ISOLATE	34.81109-118.20192
CP_1231	PUB	DEPRESS	4	SQ_FT	ISOLATE	34.81104-118.20191
CP_1232	PUB	DEPRESS	31	SQ_FT	ISOLATE	34.81106-118.2019
CP_1233	PUB	DEPRESS	73	SQ_FT	ISOLATE	34.81113-118.20186
CP_1234	PUB	DEPRESS	12	SQ_FT	ISOLATE	34.81067-118.20184
CP_1235	PUB	DEPRESS	11	SQ_FT	ISOLATE	34.81069-118.20182
CP_1236	PUB	DEPRESS	11	SQ_FT	ISOLATE	34.81109-118.20181
CP_1237	PUB	DEPRESS	15	SQ_FT	ISOLATE	34.81221-118.20179
CP_1238	PUB	DEPRESS	593	SQ_FT	ISOLATE	34.81107-118.20177
CP_1239	PUB	DEPRESS	264	SQ_FT	ISOLATE	34.81058-118.20177

CP_1240-001	PUB	DEPRESS	33	SQ_FT	ISOLATE	34.81072-118.20175
CP_1240-002	PUB	DEPRESS	13	SQ_FT	ISOLATE	34.81072-118.20175
CP_1241	PUB	DEPRESS	60	SQ_FT	ISOLATE	34.81041-118.20176
CP-1242	PUB	DEPRESS	19	SQ_FT	ISOLATE	34.81102-118.20175
CP_1243-001	PUB	DEPRESS	13	SQ_FT	ISOLATE	34.81201-118.20162
CP-1243-002	PUB	DEPRESS	22	SQ_FT	ISOLATE	34.81201-118.20162
CP_1243-003	PUB	DEPRESS	6	SQ_FT	ISOLATE	34.81201-118.20162
CP_1243-004	PUB	DEPRESS	13	SQ_FT	ISOLATE	34.81201-118.20162
CP_1243-005	PUB	DEPRESS	1	SQ_FT	ISOLATE	34.81201-118.20162
CP_1243-006	PUB	DEPRESS	3	SQ_FT	ISOLATE	34.81201-118.20162
CP_1244	PUB	DEPRESS	509	SQ_FT	ISOLATE	34.81039-118.20161
CP_1245-001	PUB	DEPRESS	15	SQ_FT	ISOLATE	34.81196-118.20145
CP_1245-002	PUB	DEPRESS	1	SQ_FT	ISOLATE	34.81196-118.20145
CP_1246-001	PUB	DEPRESS	5	SQ_FT	ISOLATE	34.81009-118.20142
CP_1246-002	PUB	DEPRESS	343	SQ_FT	ISOLATE	34.81009-118.20142
CP_1247	PUB	DEPRESS	70	SQ_FT	ISOLATE	34.81005-118.20141
CP_1248	PUB	DEPRESS	11	SQ_FT	ISOLATE	34.81194-118.20139
CP_1249	PUB	DEPRESS	622	SQ_FT	ISOLATE	34.81036-118.20137
CP_1250-001	PUB	DEPRESS	104	SQ_FT	ISOLATE	34.80974-118.20135
CP_1250-002	PUB	DEPRESS	3	SQ_FT	ISOLATE	34.80974-118.20135
CP_1251	PUB	DEPRESS	148	SQ_FT	ISOLATE	34.81017-118.20136
CP_-1252-001	PUB	DEPRESS	3	SQ_FT	ISOLATE	34.81191-118.20132
CP_1252-002	PUB	DEPRESS	17	SQ_FT	ISOLATE	34.81191-118.20132
CP_1252-003	PUB	DEPRESS	9	SQ_FT	ISOLATE	34.81191-118.20132
CP_1252-004	PUB	DEPRESS	0.1	SQ_FT	ISOLATE	34.81191-118.20132
CP_1252-005	PUB	DEPRESS	19	SQ_FT	ISOLATE	34.81191-118.20132
CP_1253-001	PUB	DEPRESS	3	SQ_FT	ISOLATE	34.81184-118.20125
CP_1253-002	PUB	DEPRESS	1	SQ_FT	ISOLATE	34.81184-118.20125
CP_1253-003	PUB	DEPRESS	6	SQ_FT	ISOLATE	34.81184-118.20125
CP_1253-004	PUB	DEPRESS	4	SQ_FT	ISOLATE	34.81184-118.20125
CP_1254-001	PUB	DEPRESS	640	SQ_FT	ISOLATE	34.81031-118.2012
CP_1254-002	PUB	DEPRESS	3	SQ_FT	ISOLATE	34.81031-118.2012
CP_1255	PUB	DEPRESS	23	SQ_FT	ISOLATE	34.8118 -118.2012
CP_1256	PUB	DEPRESS	9	SQ_FT	ISOLATE	34.81076-118.2011
CP_1257-001	PUB	DEPRESS	1	SQ_FT	ISOLATE	34.81176-118.2011
CP_1257-002	PUB	DEPRESS	12	SQ_FT	ISOLATE	34.81176-118.2011
CP_1257-003	PUB	DEPRESS	68	SQ_FT	ISOLATE	34.81176-118.2011
CP_1258-001	PUB	DEPRESS	2	SQ_FT	ISOLATE	34.80998-118.2011
CP_1258-002	PUB	DEPRESS	13	SQ_FT	ISOLATE	34.80998-118.2011
CP-1259	PUB	DEPRESS	227	SQ_FT	ISOLATE	34.81041-118.20106
CP_1260	PUB	DEPRESS	88	SQ_FT	ISOLATE	34.81033-118.20106
CP_1261	PUB	DEPRESS	28	SQ_FT	ISOLATE	34.81077-118.20105
CP_1262	PUB	DEPRESS	10	SQ_FT	ISOLATE	34.81034-118.20095
CP_1263-001	PUB	DEPRESS	135	SQ_FT	ISOLATE	34.81173-118.2009
CP_1263-002	PUB	DEPRESS	58	SQ_FT	ISOLATE	34.81173-118.2009
CP_1263-003	PUB	DEPRESS	1	SQ_FT	ISOLATE	34.81173-118.2009
CP_1264	PUB	DEPRESS	121	SQ_FT	ISOLATE	34.81054-118.20086
CP_1265	PUB	DEPRESS	3032	SQ_FT	ISOLATE	34.80982-118.20079
CP-1266	PUB	DEPRESS	787	SQ_FT	ISOLATE	34.80866-118.20075
CP_1267	PUB	DEPRESS	20	SQ_FT	ISOLATE	34.81081-118.20061
CP-1268	PUB	DEPRESS	14	SQ_FT	ISOLATE	34.81044-118.20038
CP_1269	PUB	DEPRESS	252	SQ_FT	ISOLATE	34.81042-118.20034
CP_1270	PUB	DEPRESS	190	SQ_FT	ISOLATE	34.81171-118.20024
CP_1271	PUB	DEPRESS	2333	SQ_FT	ISOLATE	$34.808-118.20017$
CP_1272	PUB	DEPRESS	1411	SQ_FT	ISOLATE	34.81047-118.20004
CP_1273	PUB	DEPRESS	8286	SQ_FT	ISOLATE	34.80992-118.20001
CP-1274	PUB	DEPRESS	5	SQ_FT	ISOLATE	34.81039-118.19998
CP_1275	PUB	DEPRESS	2	SQ_FT	ISOLATE	34.81038-118.19998
CP_1276	PUB	DEPRESS	162	SQ_FT	ISOLATE	34.81073-118.19984
CP_1277	PUB	DEPRESS	21	SQ_FT	ISOLATE	34.81057-118.19961
CP_1278	PUB	DEPRESS	89	SQ_FT	ISOLATE	34.81064-118.1992
CP_1279	PUB	DEPRESS	1045	SQ_FT	ISOLATE	$34.8093-118.19879$
CP_1280	PUB	DEPRESS	14	SQ_FT	ISOLATE	34.81055-118.1987
CP_1281	PUB	DEPRESS	12	SQ_FT	ISOLATE	34.80951-118.19859
CP_1282	PUB	DEPRESS	9	SQ_FT	ISOLATE	34.81068-118.19856
CP_1283	PUB	DEPRESS	198	SQ_FT	ISOLATE	34.80971-118.19834

CP_1284	PUB
CP_1285	PUB
CP_1286	PUB
CP_1287	PUB
PD_1288	PUB
CP_1289	PUB
CP_1290	PUB
CP_1291	PUB
CP_1292	PUB
CP_1293	PUB
CP_1294	PUB
CP_1295	PUB
CP_1296	PUB
CP_1297	PUB
CP_1298	PUB
CP_1299	PUB
CP_1300	PUB
CP_1301	PUB
CP_1302	PUB
CP_1313-001	PUB
CP_1313-002	PUB
CP_1313-003	PUB
CP_1313-004	PUB
CP_1313-005	PUB
CP_1314	PUB
CP_1315	PUB
CP_1316	PUB
CP_1321	PUB
CP_1322	PUB
CP_1323	PUB
CP_1325	PUB
CP_1328	PUB
CP_1332	PUB
CP_1334	PUB
CP_1335	PUB
CP_1337	PUB
CP_1338	PUB
CP_1339	PUB
CP_1341	PUB
CP_1342-001	PUB
CP_1342-002	PUB
CP_1342-003	PUB
CP_1342-004	PUB
CP_1342-005	PUB
CP_1345	PUB
CP_1346	PUB
CP_3333-059	PUB
CP_3334-060	PUB
CP_3335-061	PUB
CP_3336-001	PUB
CP_3336-002	PUB
CP_3337-056	PUB
CP_3338-055	PUB
CP_3340-054	PUB
CP_3344-062	PUB

DEPRESS	10959	SQ_FT	ISOLATE	34.80729-118.19833
DEPRESS	29	SQ_FT	ISOLATE	34.80976-118.19833
DEPRESS	54	SQ_FT	ISOLATE	34.80983-118.19832
DEPRESS	13	SQ_FT	ISOLATE	34.80973-118.19829
RIVERINE	10262	SQ_FT	ISOLATE	34.80706-118.19653
DEPRESS	1641	SQ_FT	ISOLATE	34.80622-118.20294
DEPRESS	889	SQ_FT	ISOLATE	34.80469-118.20265
DEPRESS	1291	SQ_FT	ISOLATE	34.80522-118.20265
DEPRESS	131	SQ_FT	ISOLATE	34.80519-118.20255
DEPRESS	528	SQ_FT	ISOLATE	34.80456-118.20254
DEPRESS	3893	SQ_FT	ISOLATE	34.80606-118.2025
DEPRESS	453	SQ_FT	ISOLATE	34.80645-118.2024
DEPRESS	26	SQ_FT	ISOLATE	34.80641-118.20237
DEPRESS	1278	SQ_FT	ISOLATE	34.80418-118.20184
DEPRESS	55	SQ_FT	ISOLATE	34.80384-118.2018
DEPRESS	1616	SQ_FT	ISOLATE	34.80519-118.20151
DEPRESS	572	SQ_FT	ISOLATE	34.80648-118.20125
DEPRESS	1538	SQ_FT	ISOLATE	34.80639-118.20105
DEPRESS	567	SQ_FT	ISOLATE	34.80584-118.20059
DEPRESS	424	SQ_FT	ISOLATE	34.80585-118.19943
DEPRESS	8	SQ_FT	ISOLATE	34.80585-118.19943
DEPRESS	0.1	SQ_FT	ISOLATE	34.80585-118.19943
DEPRESS	11	SQ_FT	ISOLATE	34.80585-118.19943
DEPRESS	11	SQ_FT	ISOLATE	34.80585-118.19943
DEPRESS	13	SQ_FT	ISOLATE	34.80584-118.19936
DEPRESS	41	SQ_FT	ISOLATE	34.80581-118.19934
DEPRESS	30	SQ_FT	ISOLATE	34.80642-118.19922
DEPRESS	81	SQ_FT	ISOLATE	34.80402-118.19835
DEPRESS	140	SQ_FT	ISOLATE	34.80405-118.19833
DEPRESS	43	SQ_FT	ISOLATE	$34.804-118.19831$
DEPRESS	98	SQ_FT	ISOLATE	34.80392-118.19812
DEPRESS	98	SQ_FT	ISOLATE	34.80342-118.19772
DEPRESS	132	SQ_FT	ISOLATE	34.80356-118.19741
DEPRESS	435	SQ_FT	ISOLATE	34.80308-118.19689
DEPRESS	62	SQ_FT	ISOLATE	34.80444-118.19649
DEPRESS	27	SQ_FT	ISOLATE	34.80463-118.19583
DEPRESS	28	SQ_FT	ISOLATE	34.80466-118.19581
DEPRESS	44	SQ_FT	ISOLATE	34.80469-118.19571
DEPRESS	62	SQ_FT	ISOLATE	34.80456-118.19539
DEPRESS	30	SQ_FT	ISOLATE	34.80482-118.19447
DEPRESS	12	SQ_FT	ISOLATE	34.80482-118.19447
DEPRESS	101	SQ_FT	ISOLATE	34.80482-118.19447
DEPRESS	8	SQ_FT	ISOLATE	34.80482-118.19447
DEPRESS	20	SQ_FT	ISOLATE	34.80482-118.19447
DEPRESS	321	SQ_FT	ISOLATE	34.80444-118.19369
DEPRESS	3	SQ_FT	ISOLATE	34.80474-118.19359
DEPRESS	1	SQ_FT	ISOLATE	34.8168 -118.20334
DEPRESS	0.1	SQ_FT	ISOLATE	34.81681-118.20332
DEPRESS	1	SQ_FT	ISOLATE	34.81667-118.20302
DEPRESS	3	SQ_FT	ISOLATE	34.81228-118.20222
DEPRESS	10	SQ_FT	ISOLATE	34.81228-118.20222
DEPRESS	6	SQ_FT	ISOLATE	34.81197-118.20147
DEPRESS	1	SQ_FT	ISOLATE	34.8099 -118.20115
DEPRESS	4	SQ_FT	ISOLATE	34.80449-118.19641
DEPRESS	2	SQ_FT	ISOLATE	34.80476-118.19365.

 Location Within Antelope Valley Watershed

Kern County 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Kern County 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Kern County 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Kern County 2010 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Kern County 2010 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Aerial Sources: http://maps.co.kern.ca.us/arcgis/services/ and http://gis.apfo.usda.gov/arcgis/services/NAIP/

APPROVED JURISDICTIONAL DETERMINATION FORM U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): August 3, 2017

B. DISTRICT OFFICE, FILE NAME, AND NUMBER:SPL-2010-00945-JD5

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

State: CA County/parish/borough: Kern and Los Angeles City: N/A
Center coordinates of site (lat/long in degree decimal format): Lat. $34.83166^{\circ} \mathbf{N}$, Long. $118.21721^{\circ} \mathbf{W}$.
Universal Transverse Mercator: 388699 m E, 3855050 m N
Name of nearest waterbody: Rosamond Lake
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: N/A Name of watershed or Hydrologic Unit Code (HUC): Cottonwood Creek- Tylerhorse Canyon, California 1809020618
Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

Office (Desk) Determination. Date: July 25, 2017
Field Determination. Date(s):

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

Waters subject to the ebb and flow of the tide.
Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.
Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There Are no "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
a. Indicate presence of waters of U.S. in review area (check all that apply): ${ }^{1}$
$\square \quad$ TNWs, including territorial seas
Wetlands adjacent to TNWs
Relatively permanent waters ${ }^{2}$ (RPWs) that flow directly or indirectly into TNWs
Non-RPWs that flow directly or indirectly into TNWs
Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
Impoundments of jurisdictional waters
Isolated (interstate or intrastate) waters, including isolated wetlands
b. Identify (estimate) size of waters of the U.S. in the review area:

Non-wetland waters: linear feet: width (ft) and/or acres.
Wetlands: acres.
c. Limits (boundaries) of jurisdiction based on: Not Applicable.

Elevation of established OHWM (if known):
2. Non-regulated waters/wetlands (check if applicable): ${ }^{3}$

Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain:
Within the Cottonwood Creek-Tylerhorse Canyon HUC 10, the project area contains 57 aquatic features. These features include eight unnamed ephemeral desert wash stream features, 48 claypan features, and one ponded area. Ephemeral desert wash streams span a total of approximately 6,958 linear feet (1.31 miles) and cover approximately 0.52 acre; claypan features cover approximately $\mathbf{1 . 6 0}$ acres; and one ponded area occupies $\mathbf{8}$ square feet. Labeled maps and tables of features and dimensions are

[^14]provided in the Aquatic Resources Delineation Report, which identifies each feature according to which HUC-10 watershed it occurs within.

The unnamed ephemeral desert washes, features Str_0340 through Str-0346 and Str_0348, generally flow east within the study area and continue to flow generally east outside the study area toward Rosamond Dry Lake. Most of the ephemeral desert wash features dissipate and do not have defined channels that can be traced all the way down to the terminal point in the watershed. These features are similar to many other streams in the Antelope Valley Watershed that have well-defined channels where they originate in the mountains and foothills, but dissipate on the valley floor, where water movement during storms is primarily sheet flow.

Ephemeral claypan features, $\mathrm{CP}_{-} 1078$ through $\mathrm{CP}_{-} 1110, \mathrm{CP}-1112$ through $114, \mathrm{CP}_{-} 1118, \mathrm{CP}_{-} 1130$, and $\mathrm{CP}_{-} 1136$, are scattered throughout the study area due to the relatively flat topography. Note that some features have multiple segments and are labeled as such in attached tables (e.g. CP_1095-001, CP_1095-002, etc.). These low-lying depressional features are ephemeral or intermittent, and typically hold water for a few weeks annually. One area of ponding, feature PD_1103, holds water for at least fourteen days after storms, was also identified in the study area. This aquatic feature generally holds water for a few weeks similar to claypans.

All aquatic features within the study area are ephemeral and are not used for commerce. The hydrologic connection to the low point in the Antelope Valley watershed, Rogers, Rosamond, and Buckhorn Dry Lakes, is primarily through sheet flow during storms. A review of topographic maps and watershed boundary datasets indicates that waters from the study area drain toward Rosamond Dry Lake.

There are no Traditional Navigable Waters (TNWs) or Relatively Permanent Waters (RPWs) in the study area, and the ephemeral desert streams in the study area are not tributaries to RPWs or TNWs. A previous SWANCC watershed-level Approved JD for Antelope Valley (HUC10 \#s 1809020609 through 1809020624, excluding those portions of HUC12s 18090206151, 1901902061102, and 180902061103 that drain toward Lake Palmdale and its tributaries) determined that Rosamond, Buckhorn, and Rogers Dry Lakes, and their tributaries, (i.e. the Antelope Valley Watershed, excluding Lake Palmdale and tributaries to Lake Palmdale) are nonjurisdictional waters of the United States under SWANCC. This determination, SPL-2011-01084-SLP, dated June 7, 2013, found that these Antelope Valley waters are not tributary to either a TNW or an (a)(3) water and Rosamond, Buckhorn, and Rogers Dry Lakes are not (a)(3) waters themselves. The Corps made this watershed conclusion because the Antelope Valley watershed is an isolated, intrastate watershed without any surface water related interstate commerce. This previous determination is still in effect, and is appended as a supporting document for this determination.

Previously approved jurisdictional determinations have been made for tributaries to these dry lakes. When these lakes were analyzed in SPL-2011-01084-SLP, the Corps found no published commercial uses of the surface waters of any tributaries to Rosamond, Buckhorn and Rogers Dry Lakes, and determined that a review of aerial photographs (Google Earth) also did not depict surface water usage of any drainages tributary to the dry lakes. The Corps found that all tributaries to Rosamond, Buckhorn and Rogers Dry Lakes are not (a)(3) waters as defined by 33 C.F.R. section 328.3(a)(3)(i-iii). The previous determination found that since Rosamond, Buckhorn, and Rogers Dry Lakes are intrastate, isolated waters without a surface water connection to commerce, all tributaries to Rosamond, Buckhorn, and Rogers Dry Lakes as part of the overall watershed system are also isolated and additionally have no nexus to commerce. A review of current conditions and updated literature review found that conditions have not changed since the SPL-2011-01084-SLP determination for Antelope Valley. Thus, the eight unnamed ephemeral desert wash stream features, 48 claypan features, and one feature formed through ponding in desert developed areas in this study area are intrastate, isolated waters with no interstate or foreign commerce connection and therefore are not currently regulated.

The above is based upon the review of aerial photographs (Google Earth, accessed July 25, 2017) that also did not show surface water usage of the project drainages or the Rosamond Dry Lake terminus. Since the Rosamond Dry Lake is an intrastate, isolated water without a surface water connection to commerce (see prior AJD file No. SPL-2011-01084-SLP), the subject 33 unnamed ephemeral desert stream features, $\mathbf{3 2 5}$ claypan features, and 17 ponded features, as part of the same overall system, are also isolated and additionally have no nexus to commerce.

Based on the information above, the subject features: 8 unnamed ephemeral desert wash stream features, 48 claypan features, and one ponded area, are NONJURISDICTIONAL waters of the United States, since the waters are NOT tributary to either a TNW or an (a)(3) water and are NOT (a)(3) waters themselves. The Corps makes such a conclusion since the waters are tribuatary to an isolated, intrastate dry lake.

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A. 1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A. 1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW:
Summarize rationale supporting determination:
2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent":

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody ${ }^{4}$ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B. 1 for the tributary, Section III.B. 2 for any onsite wetlands, and Section III.B. 3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
(i) General Area Conditions:
Watershed size: \quad Pick List
Drainage area: \quad Pick List
Average annual rainfall: \quad inches
Average annual snowfall: \quad inches
(ii) Physical Characteristics:
(a) Relationship with TNW:

Tributary flows directly into TNW.Tributary flows through Pick List tributaries before entering TNW.
Project waters are Pick List river miles from TNW.
Project waters are Pick List river miles from RPW.
Project waters are Pick List aerial (straight) miles from TNW.
Project waters are Pick List aerial (straight) miles from RPW.
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW^{5} :
Tributary stream order, if known:

[^15](b) General Tributary Characteristics (check all that apply): Tributary is:
\square Natural
Artificial (man-made). Explain:Manipulated (man-altered). Explain:
Tributary properties with respect to top of bank (estimate):

Average width: \quad feet	
Average depth:	feet
Average side slopes:	Pick List.

Primary tributary substrate composition (check all that apply):

\square Silts	\square Sands	\square Concrete
\square Cobbles	\square Gravel	\square Muck
\square Bedrock	\square Vegetation. Type/\% cover:	
\square Other. Explain:	.	

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain:
Presence of run/riffle/pool complexes. Explain:
Tributary geometry: Pick List
Tributary gradient (approximate average slope): \%
(c) Flow:

Tributary provides for: Pick List
Estimate average number of flow events in review area/year: Pick List
Describe flow regime:
Other information on duration and volume:
Surface flow is: Pick List. Characteristics:
Subsurface flow: Pick List. Explain findings:
\square Dye (or other) test performed:
Tributary has (check all that apply):
\square Bed and banks
$\square \mathrm{OHWM}^{6}$ (check all indicators that apply):

| \square clear, natural line impressed on the bank | \square the presence of litter and debris |
| :--- | :--- | :--- |
| \square changes in the character of soil | \square destruction of terrestrial vegetation |
| \square shelving | \square the presence of wrack line |

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
\square High Tide Line indicated by:
Mean High Water Mark indicated by:oil or scum line along shore objects \square survey to available datum;fine shell or debris deposits (foreshore)physical markings;physical markings/characteristicsvegetation lines/changes in vegetation types.
\square tidal gauges
other (list):

(iii) Chemical Characteristics:

Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain:
Identify specific pollutants, if known:

[^16](iv) Biological Characteristics. Channel supports (check all that apply):
\square Riparian corridor. Characteristics (type, average width):
\square Wetland fringe. Characteristics:
Habitat for:Federally Listed species. Explain findings:Fish/spawn areas. Explain findings:
\square Other environmentally-sensitive species. Explain findings:Aquatic/wildlife diversity. Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics:

Properties:
Wetland size: acres
Wetland type. Explain:
Wetland quality. Explain:
Project wetlands cross or serve as state boundaries. Explain:
(b) General Flow Relationship with Non-TNW:

Flow is: Pick List. Explain:
Surface flow is: Pick List Characteristics:

Subsurface flow: Pick List. Explain findings:Dye (or other) test performed:
(c) Wetland Adjacency Determination with Non-TNW:Directly abuttingNot directly abutting
\square Discrete wetland hydrologic connection. Explain:
\square Ecological connection. Explain:
Separated by berm/barrier. Explain:
(d) Proximity (Relationship) to TNW

Project wetlands are Pick List river miles from TNW.
Project waters are Pick List aerial (straight) miles from TNW.
Flow is from: Pick List.
Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain:
Identify specific pollutants, if known:
(iii) Biological Characteristics. Wetland supports (check all that apply):
\square Riparian buffer. Characteristics (type, average width):
\square Vegetation type/percent cover. Explain:
\square Habitat for:
\square Federally Listed species. Explain findings:
\square Fish/spawn areas. Explain findings:Other environmentally-sensitive species. Explain findings:Aquatic/wildlife diversity. Explain findings:
3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in the cumulative analysis: Pick List
Approximately () acres in total are being considered in the cumulative analysis.

For each wetland, specify the following:
Directly abuts? (Y/N) Size (in acres) \quad Directly abuts? (Y/N) Size (in acres)

Summarize overall biological, chemical and physical functions being performed:

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:
3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:TNWs: linear feet width (ft), Or, acres.
Wetlands adjacent to TNWs: acres.
2. RPWs that flow directly or indirectly into TNWs.
\square Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
\square Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):
\square Tributary waters: linear feet width (ft).
\square Other non-wetland waters: acres. Identify type(s) of waters: .
3. Non-RPWs ${ }^{8}$ that flow directly or indirectly into TNWs.
\square Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):
\square Tributary waters: linear feet width (ft).
\square Other non-wetland waters: acres.
Identify type(s) of waters: .
4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
\square Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:
\square Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

Provide acreage estimates for jurisdictional wetlands in the review area:
acres.
5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
\square Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.
6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.
7. Impoundments of jurisdictional waters. ${ }^{9}$

As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
Demonstrate that impoundment was created from "waters of the U.S.," or
\square Demonstrate that water meets the criteria for one of the categories presented above (1-6), orDemonstrate that water is isolated with a nexus to commerce (see E below).

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY): ${ }^{10}$

\square which are or could be used by interstate or foreign travelers for recreational or other purposes.
\square from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
\square which are or could be used for industrial purposes by industries in interstate commerce.
\square Interstate isolated waters. Explain:
\square Other factors. Explain:
Identify water body and summarize rationale supporting determination:

[^17]Provide estimates for jurisdictional waters in the review area (check all that apply):

Tributary waters: linear feet width (ft).

Other non-wetland waters: acres. Identify type(s) of waters:Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

\square If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
\boxtimes Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
\boxtimes Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR).
Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain:
Other: (explain, if not covered above):
Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
\boxtimes Non-wetland waters (i.e., rivers, streams): 6958 linear feet averaging $\mathbf{3}$ to $\mathbf{1 1}$ feet in width (ft).
\square Lakes/ponds: acres.
Other non-wetland waters: 1.60 acres. List type of aquatic resource: Claypans (1.6 acres) and other ponded areas (8 sq ft).
\square Wetlands: acres
Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply):
\square Non-wetland waters (i.e., rivers, streams): linear feet, width (ft).
\square Lakes/ponds: acres.
\square Other non-wetland waters: acres. List type of aquatic resource:
\square Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Features are depicted on Map Sheets 133-135 in Appendix E of the submitted delineation..
\boxtimes Data sheets prepared/submitted by or on behalf of the applicant/consultant.
\square Office concurs with data sheets/delineation report.
\square Office does not concur with data sheets/delineation report.
\square Data sheets prepared by the Corps:
Corps navigable waters' study:
U.S. Geological Survey Hydrologic Atlas:(see enclosed map package for NHD flowline and watershed boundary data).
\boxtimes USGS NHD data.
\boxtimes USGS 8 and 12 digit HUC maps.
U.S. Geological Survey map(s). Cite scale \& quad name: Rosamond 7.5 minute quadrangle (See enclosed map package).

USDA Natural Resources Conservation Service Soil Survey. Citation:
\square National wetlands inventory map(s). Cite name:
\square State/Local wetland inventory map(s):
FEMA/FIRM maps:
\square 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929)
Photographs: \boxtimes Aerial (Name \& Date): NAIP Imagery 2005 and 2014 at 1-m resolution; Kern County Imagery 2008 and 2015 at 1-foot resolution; Los Angeles County 2011 and 2013 at a 1-foot resolution.
or \square Other (Name \& Date): .
\boxtimes Previous determination(s). File no. and date of response letter: SPL-2011-01084-SLP, June 7, 2013.
\square Applicable/supporting case law:
\square Applicable/supporting scientific literature:
Other information (please specify):Aquatic Resources Delineation Report prepared by the applicant/consultant references additional materials; also Appendix E contains map sheets; Appendix F contains dimensions. HUC watershed maps of review areas with NHD Data provided by the applicant/consultant; general use of NAIP Imagery 2009, 2010, and 2012 at 1-m resolution; LA County Imagery 2012 and 2014 at a 1-foot resolution; 2015 Site specific IR Imagery, 3-inch color pixel; Bing Aerial Imagery - multiple years
(scale dependent); ESRI World Imagery (streaming service) multiple years (scale dependent); Google Earth Historic Photos (used for reference and includes portions from above listed sources).

BP HSR Mapped Streams with OHWM Cottonwood
\longrightarrow Ephemeral Stream

Study Area in the Cottonwood Creek Tylerhorse Canyon Watershed Cottonwood Creek-Tylerhorse Canyon Watershed HUC-10

Wetlands Study Are \square Wetlands Study Area \longrightarrow Direction of flow based on NHD flowlines

$\underbrace{\substack{\text { Miles } \\ 0}}_{\substack{\text { Kiometers }}}$

HUC-12 Watersheds excluded
from SPL-2011-01084-SLP
$\square \begin{aligned} & \text { Wetlands Study Area } \\ & \text { (Project Footprint }+250 \text { ft Buffer) }\end{aligned}$
Cottonwood Creek

Kern County 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Kern County 2010 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.
Aerial Sources: http://maps.co.kern.ca.us/arcgis/services/ and http://gis.apfo.usda.gov/arcgis/services/NAIP/

APPROVED JURISDICTIONAL DETERMINATION FORM U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): August 3, 2017

B. DISTRICT OFFICE, FILE NAME, AND NUMBER:SPL-2010-00945-VCL-JD-6
C. PROJECT LOCATION AND BACKGROUND INFORMATION:

State: CA County/parish/borough: Los Angeles County City: N/A
Center coordinates of site (lat/long in degree decimal format): Lat. $34.79805^{\circ} \mathbf{N}$, Long. $118.19372^{\circ} \mathbf{W}$.
Universal Transverse Mercator: 390801 m E, 3851298 m N
Name of nearest waterbody: Sacatara Creek
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: N/A
Name of watershed or Hydrologic Unit Code (HUC): Sacatara Creek- Kings Canyon, California, 1809020613
\boxtimes Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
\boxtimes Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

Office (Desk) Determination. Date: July 25, 2017
Field Determination. Date(s):

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

Waters subject to the ebb and flow of the tide.
Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.
Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There Are no "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
a. Indicate presence of waters of U.S. in review area (check all that apply): ${ }^{1}$
$\square \quad$ TNWs, including territorial seas
Wetlands adjacent to TNWs
Relatively permanent waters ${ }^{2}$ (RPWs) that flow directly or indirectly into TNWs
Non-RPWs that flow directly or indirectly into TNWs
Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
Impoundments of jurisdictional waters
Isolated (interstate or intrastate) waters, including isolated wetlands
b. Identify (estimate) size of waters of the U.S. in the review area:

Non-wetland waters: linear feet: width (ft) and/or acres.
Wetlands: acres.
c. Limits (boundaries) of jurisdiction based on: Not Applicable.

Elevation of established OHWM (if known):
2. Non-regulated waters/wetlands (check if applicable): ${ }^{3}$
\boxtimes Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain:
Within the project area of the Sacatara Creek-Kings Canyon HUC 10, there are a total of 279 aquatic features. These features include 8 unnamed ephemeral desert wash stream features, 6 ephemeral ditches, and 265 claypan features. Ephemeral desert wash streams span a total of approximately 6,636 linear feet (1.26 miles) and cover approximately 0.56 acre; ephemeral ditches span approximately 1,053 linear feet (0.20 mile), and cover approximately 0.08 acre; and claypan features cover a total of

[^18]approximately 1.03 acres. Labeled maps and tables of features and dimensions are provided in the Aquatic Resources Delineation Report, which identifies each feature according to which HUC-12 watershed it occurs within.

The unnamed ephemeral desert washes, features Str_0371, Str_0374, Str_0376 through Str_0378, and Str_381 through Str_382, generally flow east within the study area. Features Str_378, Str_381, and Str_ 382 flow east offsite toward Rosamond Dry Lake. The ephemeral ditches, features Ditch_379 and Str_380, are located along road shoulders and generally flow north-south along 30th Street West until reaching culverts where the water flows under the road, or or low points where the water flows across the road, rejoining natural aquatic features or sheet flow that convey the water farther east toward Rosamond Dry Lake. Note that features Str_0378 and Ditch_0379 have multiple segments and are labeled as such in attached tables (e.g. Ditch_0379-001, Ditch_0379-002, etc.). Most of the ephemeral desert wash and ditch features dissipate and do not have defined channels that can be traced all the way down to the terminal point in the watershed. These features are similar to many other streams in the Antelope Valley Watershed that have well-defined channels where they originate in the mountains and foothills, but dissipate on the valley floor, where water movement during storms is primarily sheet flow. Ephemeral and intermittent claypan features, $\mathbf{C P}_{_} 1303$ through CP_1312, CP_1317 through CP_1320, CP_1324, CP_1326, CP_1327, CP_1329 through CP_1331, CP_1333, CP_1336, CP_1340, CP_1343 through CP_1344, CP_1347 through CP_1399, CP_1401 through CP_1425, CP_1427 through CP_1528, CP_3339, CP_3341 through CP_3343, CP_3345, and CP_3346, are scattered throughout the study area due to the relatively flat topography. These low-lying depressional features collect water, and when full, would overflow into surrounding areas, accumulating with sheet flow that generally moves very slowly toward Rosamond Dry Lake. Claypan aquatic resources are ephemeral or intermittent, and typically hold water for a few days to a few weeks annually. All aquatic features within the study area are emphmeral or intermittent and are not used for commerce.The hydrologic connection to the low point in the Antelope Valley watershed, Rogers, Rosamond, and Buckhorn Dry Lakes, is primarily through sheet flow during storms. A review of topographic maps and watershed boundary datasets indicates that waters from the study area drain toward Rosamond Dry Lake.

There are no Traditional Navigable Waters (TNWs) or Relatively Permanent Waters (RPWs) in the study area, and the ephemeral desert streams in the study area are not tributaries to RPWs or TNWs. A previous SWANCC watershed-level Approved JD for Antelope Valley (HUC10 \#s 1809020609 through 1809020624, excluding those portions of HUC12s 18090206151, 1901902061102, and 180902061103 that drain toward Lake Palmdale and its tributaries) determined that Rosamond, Buckhorn, and Rogers Dry Lakes, and their tributaries, (i.e. the Antelope Valley Watershed, excluding Lake Palmdale and tributaries to Lake Palmdale) are nonjurisdictional waters of the United States under SWANCC. This determination, SPL-2011-01084-SLP, dated June 7, 2013, found that these Antelope Valley waters are not tributary to either a TNW or an (a)(3) water and Rosamond, Buckhorn, and Rogers Dry Lakes are not (a)(3) waters themselves. The Corps made this watershed conclusion because the Antelope Valley watershed is an isolated, intrastate watershed without any surface water related interstate commerce. This previous determination is still in effect, and is appended as a supporting document for this determination.

Previously approved jurisdictional determinations have been made for tributaries to these dry lakes. When these lakes were analyzed in SPL-2011-01084-SLP, the Corps found no published commercial uses of the surface waters of any tributaries to Rosamond, Buckhorn, and Rogers Dry Lakes, and determined that a review of aerial photographs (Google Earth) also did not depict surface water usage of any drainages tributary to the dry lakes. The Corps found that all tributaries to Rosamond, Buckhorn, and Rogers Dry Lakes are not (a)(3) waters as defined by 33 C.F.R. section 328.3(a)(3)(i-iii). The previous determination found that since Rosamond, Buckhorn, and Rogers Dry Lakes are intrastate isolated waters without a surface water connection to commerce, all tributaries to Rosamond, Buckhorn, and Rogers Dry Lakes as part of the overall watershed system are also isolated and additionally have no nexus to commerce. A review of current conditions and updated literature review found that conditions have not changed since the SPL-2011-01084-SLP determination for Antelope Valley. Thus, the eight ephemeral desert stream segments, six ephemeral ditches, and 265 ephemeral or intermittent claypan features in this study area are intrastate, isolated waters with no interstate or foreign commerce connection and therefore are not currently regulated.

The above is based upon the review of aerial photographs (Google Earth, accessed July 25, 2017) that also did not show surface water usage of the project drainages or the Rosamond Dry Lake terminus. Since the Rosamond Dry Lake is an intrastate isolated water without a surface water connection to commerce (see prior AJD file No. SPL-2011-01084-SLP), the subject 8 unnamed ephemeral desert wash stream features, 6 ephemeral ditches, and 265 claypan features, as part of the same overall system, are also isolated and additionally have no nexus to commerce.

Based on the information above, the subject drainages: 8 unnamed ephemeral desert wash stream features, 6 ephemeral ditches, and 265 claypan features, are NONJURISDICTIONAL waters of the United States, since the waters are NOT tributary to either a TNW or an (a)(3) water and are NOT (a)(3) waters themselves. The Corps makes such a conclusion since the waters are tribuatary to an isolated, intrastate dry lake.

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A. 1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A. 1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW:
Summarize rationale supporting determination:
2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent":

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody ${ }^{4}$ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B. 1 for the tributary, Section III.B. 2 for any onsite wetlands, and Section III.B. 3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
(i) General Area Conditions:
Watershed size: \quad Pick List
Drainage area: \quad Pick List
Average annual rainfall: \quad inches
Average annual snowfall: \quad inches
(ii) Physical Characteristics:
(a) Relationship with TNW:

Tributary flows directly into TNW.Tributary flows through Pick List tributaries before entering TNW.
Project waters are Pick List river miles from TNW.
Project waters are Pick List river miles from RPW.
Project waters are Pick List aerial (straight) miles from TNW.
Project waters are Pick List aerial (straight) miles from RPW.
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW^{5} :
Tributary stream order, if known:

[^19](b) General Tributary Characteristics (check all that apply): Tributary is:
\square Natural
Artificial (man-made). Explain:
Manipulated (man-altered). Explain:
Tributary properties with respect to top of bank (estimate):

Average width: \quad feet	
Average depth: \quad feet	
Average side slopes:	Pick Lis .

Primary tributary substrate composition (check all that apply):

\square Silts	\square Sands	\square Concrete
\square Cobbles	\square Gravel	\square Muck
\square Bedrock	\square Vegetation. Type/\% cover:	
\square Other. Explain:	.	

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain:
Presence of run/riffle/pool complexes. Explain:
Tributary geometry: Pick List
Tributary gradient (approximate average slope): \%
(c) Flow:

Tributary provides for: Pick List
Estimate average number of flow events in review area/year: Pick List
Describe flow regime:
Other information on duration and volume:
Surface flow is: Pick List. Characteristics:
Subsurface flow: Pick List. Explain findings:
\square Dye (or other) test performed:
Tributary has (check all that apply):
\square Bed and banks
$\square \mathrm{OHWM}^{6}$ (check all indicators that apply):

\square clear, natural line impressed on the bank	\square the presence of litter and debris	
\square changes in the character of soil	\square destruction of terrestrial vegetation	
\square shelving	\square the presence of wrack line	
\square vegetation matted down, bent, or absent	\square sediment sorting	
\square leaf litter disturbed or washed away	\square	scour
\square sediment deposition	\square multiple observed or predicted flow events	
\square water staining	\square	abrupt change in plant community
\square other (list):		
Discontinuous OHWM. ${ }^{7}$ Explain:		

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
\square High Tide Line indicated by:
Mean High Water Mark indicated by:oil or scum line along shore objects \square survey to available datum;fine shell or debris deposits (foreshore)physical markings;physical markings/characteristicsvegetation lines/changes in vegetation types.
\square tidal gauges
other (list):

(iii) Chemical Characteristics:

Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain:
Identify specific pollutants, if known:

[^20](iv) Biological Characteristics. Channel supports (check all that apply):
\square Riparian corridor. Characteristics (type, average width):
\square Wetland fringe. Characteristics:
Habitat for:Federally Listed species. Explain findings:Fish/spawn areas. Explain findings:
\square Other environmentally-sensitive species. Explain findings:Aquatic/wildlife diversity. Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics:

Properties:
Wetland size: acres
Wetland type. Explain:
Wetland quality. Explain:
Project wetlands cross or serve as state boundaries. Explain:
(b) General Flow Relationship with Non-TNW:

Flow is: Pick List. Explain:
Surface flow is: Pick List Characteristics:

Subsurface flow: Pick List. Explain findings:Dye (or other) test performed:
(c) Wetland Adjacency Determination with Non-TNW:Directly abuttingNot directly abutting
\square Discrete wetland hydrologic connection. Explain:
\square Ecological connection. Explain:
Separated by berm/barrier. Explain:
(d) Proximity (Relationship) to TNW

Project wetlands are Pick List river miles from TNW.
Project waters are Pick List aerial (straight) miles from TNW.
Flow is from: Pick List.
Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain:
Identify specific pollutants, if known:
(iii) Biological Characteristics. Wetland supports (check all that apply):
\square Riparian buffer. Characteristics (type, average width):
\square Vegetation type/percent cover. Explain:
\square Habitat for:
\square Federally Listed species. Explain findings:
\square Fish/spawn areas. Explain findings:Other environmentally-sensitive species. Explain findings:Aquatic/wildlife diversity. Explain findings:
3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in the cumulative analysis: Pick List
Approximately () acres in total are being considered in the cumulative analysis.

For each wetland, specify the following:
Directly abuts? (Y/N) Size (in acres) \quad Directly abuts? (Y/N) Size (in acres)

Summarize overall biological, chemical and physical functions being performed:

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:
3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:TNWs: linear feet width (ft), Or, acres.
Wetlands adjacent to TNWs: acres.
2. RPWs that flow directly or indirectly into TNWs.

Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
\square Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):
\square Tributary waters: linear feet width (ft).
\square Other non-wetland waters: acres. Identify type(s) of waters: .
3. Non-RPWs ${ }^{8}$ that flow directly or indirectly into TNWs.
\square Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):
\square Tributary waters: linear feet width (ft).
\square Other non-wetland waters: acres.
Identify type(s) of waters: .
4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
\square Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:
\square Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

Provide acreage estimates for jurisdictional wetlands in the review area:
acres.
5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
\square Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.
6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.
7. Impoundments of jurisdictional waters. ${ }^{9}$

As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
Demonstrate that impoundment was created from "waters of the U.S.," or
\square Demonstrate that water meets the criteria for one of the categories presented above (1-6), orDemonstrate that water is isolated with a nexus to commerce (see E below).

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY): ${ }^{10}$

\square which are or could be used by interstate or foreign travelers for recreational or other purposes.
\square from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
\square which are or could be used for industrial purposes by industries in interstate commerce.
\square Interstate isolated waters. Explain:
\square Other factors. Explain:
Identify water body and summarize rationale supporting determination:

[^21]Provide estimates for jurisdictional waters in the review area (check all that apply):

Tributary waters: linear feet width (ft).Other non-wetland waters: acres. Identify type(s) of waters:Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

\square If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
\boxtimes Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
\boxtimes Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR).
Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain:
Other: (explain, if not covered above):
Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
邓 Non-wetland waters (i.e., rivers, streams): approximately $\mathbf{6 , 6 3 7}$ linear feet ranging from $\mathbf{1}$ to $\mathbf{1 2}$ feet in width (ft).
\square Lakes/ponds: acres.
Other non-wetland waters: 1.11 acres. List type of aquatic resource: Claypans 1.03 acres and Ditches 0.08 acres.
\square Wetlands: acres
Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply):

\square	Non-wetland waters (i.e., rivers, streams): linear feet, width (ft).
\square	Lakes/ponds: acres.
\square	Other non-wetland waters: acres. List type of aquatic resource:
\square	Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Features are depicted on Map Sheets 138-140 in Appendix E of the submitted delineation..
\boxtimes Data sheets prepared/submitted by or on behalf of the applicant/consultant.
\square Office concurs with data sheets/delineation report.
\square Office does not concur with data sheets/delineation report.
\square Data sheets prepared by the Corps:
Corps navigable waters' study:
U.S. Geological Survey Hydrologic Atlas:
\boxtimes USGS NHD data.
\boxtimes USGS 8 and 12 digit HUC maps.
\boxtimes U.S. Geological Survey map(s). Cite scale \& quad name: Rosamond 7.5 minute quadrangle. USDA Natural Resources Conservation Service Soil Survey. Citation:
\square National wetlands inventory map(s). Cite name:
\square State/Local wetland inventory map(s):
FEMA/FIRM maps:
\square 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929)
Photographs: \boxtimes Aerial (Name \& Date): NAIP Imagery 2005 and 2014 at 1-m resolution; Kern County Imagery 2010 and 2014 at 1-foot resolution; LA County Imagery 2011 and 2014 at a 1-foot resolution.
or \square Other (Name \& Date):
\boxtimes Previous determination(s). File no. and date of response letter: SPL-2011-01084-SLP, June 7, 2013.
Applicable/supporting case law:
\square Applicable/supporting scientific literature:
\boxtimes Other information (please specify):Aquatic Resources Delineation Report prepared by the applicant/consultant references additional materials; also Appendix E contains map sheets; Appendix F contains dimensions. HUC watershed maps of review areas with NHD Data provided by the applicant/consultant; general use of NAIP Imagery 2009, 2010, and 2012 at 1-m resolution; LA County Imagery 2015 at 1-foot resolution; Kern County Imagery 2008 at a 1-foot resolution; 2015 Site specific IR Imagery, 3-inch color pixel;

Bing Aerial Imagery－multiple years（scale dependent）；ESRI World Imagery（streaming service）multiple years（scale dependent）； Google Earth Historic Photos（used for reference and includes portions from above listed sources）．

B．ADDITIONAL COMMENTS TO SUPPORT JD：							
Waters＿Name	Cowa	＿Code HG	ode	Amount	Units	Waters＿Type Latitude	Longitude
Str＿0371	R6	RIVERINE	0.03	ACRE	ISOLATE	E 34.80112439	－118．1985431
Str＿0374	R6	RIVERINE	0.02	ACRE	ISOLATE	E 34.7998403	－118．1948202
Str＿0376	R6	RIVERINE	0.28	ACRE	ISOLATE	34．79668022	－118．1932502
Str＿0377	R6	RIVERINE	0.05	ACRE	ISOLATE	34．79706909	－118．1862042
Str＿0378－001	R6	RIVERINE	0.14	ACRE	ISOLATE	34．79869106	－118．1857991
Str＿0378－002	R6	RIVERINE	0.03	ACRE	ISOLATE	－34．79873505	－118．1846352
Ditch＿0379－001	U	RIVERINE	3	SQ＿FT	ISOLATE	－ 34.79711977	－118．1848153
Ditch＿0379－002	U	RIVERINE	87	SQ＿FT	ISOLATE	34．79726851	－118．1848276
Ditch＿0379－003	U	RIVERINE	9	SQ＿FT	ISOLATE	－34．79767594	－118．1848579
Ditch＿0379－004	U	RIVERINE	131	SQ＿FT	ISOLATE	34．79757409	－118．1848512
Ditch＿0379－005	U	RIVERINE	0.01	ACRE	ISOLATE	－34．79845801	－118．184978
Ditch＿0380	U	RIVERINE	0.06	ACRE	ISOLATE	34．79756514	－118．1845932
Str＿0381	R6	RIVERINE	131	SQ＿FT	ISOLATE		－118．1845126
Str＿0382	R6	RIVERINE	87	SQ＿FT	ISOLATE	－ 34.79688421	－118．1843751
CP＿1303	PUB	DEPRESS	903	SQ＿FT	ISOLATE	E 34.802967	－118．200095
CP＿1304	PUB	DEPRESS	179	SQ＿FT	ISOLATE	E 34.802792	－118．200007
CP＿1305	PUB	DEPRESS	1283	SQ＿FT	ISOLATE	E 34.80287	－118．199886
CP＿1306	PUB	DEPRESS	26	SQ＿FT	ISOLATE	E 34.802812	－118．199805
CP＿1307	PUB	DEPRESS	79	SQ＿FT	ISOLATE		－118．199803
CP＿130 8	PUB	DEPRESS	6	SQ＿FT	ISOLATE	根 34.801708	－118．199766
CP＿1309	PUB	DEPRESS	10	SQ＿FT	ISOLATE	E 34.801726	－118．199764
CP＿1310	PUB	DEPRESS	104	SQ＿FT	ISOLATE	E 34.801952	－118．199755
CP＿1311	PUB	DEPRESS	4	SQ＿FT	ISOLATE	E 34.801649	－118．199528
CP＿1312	PUB	DEPRESS	76	SQ＿FT	ISOLATE	E 34.801622	－118．199444
CP＿1317－001	PUB	DEPRESS	90	SQ＿FT	ISOLATE	E 34.801329	－118．198922
CP＿1317－002	PUB	DEPRESS	66	SQ＿FT	ISOLATE	E 34.801329	－118．198922
CP＿－1318	PUB	DEPRESS	46	SQ＿FT	ISOLATE	E 34.801371	－118．198515
CP＿1319	PUB	DEPRESS	15	SQ＿FT	ISOLATE	34．801335	－118．198451
CP＿1320	PUB	DEPRESS	113	SQ＿FT	ISOLATE	E 34.801725	－118．198381
CP＿1324	PUB	DEPRESS	17	SQ＿FT	ISOLATE	E 34.801341	－118．198192
CP＿1326	PUB	DEPRESS	44	SQ＿FT	ISOLATE	E 34.801713	－118．197786
CP＿1327	PUB	DEPRESS	157	SQ＿FT	ISOLATE	－ 34.801588	－118．19776
CP＿1329	PUB	DEPRESS	69	SQ＿FT	ISOLATE	E 34．801501	－118．19763
CP＿1330	PUB	DEPRESS	47	SQ＿FT	ISOLATE	E 34.801478	－118．197552
CP＿1331	PUB	DEPRESS	91	SQ＿FT	ISOLATE	E 34.80143	－118．19751
CP＿1333	PUB	DEPRESS	109	SQ＿FT	ISOLATE	E 34.802041	－118．197179
CP＿1336	PUB	DEPRESS	1445	SQ＿FT	ISOLATE	根 34.802262	－118．196193
CP＿1340	PUB	DEPRESS	17	SQ＿FT	ISOLATE	枹 34.801436	－118．195582
CP＿1343	PUB	DEPRESS	122	SQ＿FT	ISOLATE	E 34.802861	－118．194365
CP＿1344	PUB	DEPRESS	14	SQ＿FT	ISOLATE	E 34.802218	－118．194345
CP＿1347	PUB	DEPRESS	793	SQ＿FT	ISOLATE	E 34.801908	－118．19358
CP＿1348	PUB	DEPRESS	790	SQ＿FT	ISOLATE	杖 34.801317	－118．193572
CP＿－1349	PUB	DEPRESS	11	SQ＿FT	ISOLATE	E 34.802733	－118．192885
CP＿1350	PUB	DEPRESS	23	SQ＿FT	ISOLATE	E 34．802701	－118．192819
CP＿1351	PUB	DEPRESS	16	SQ＿FT	ISOLATE	根 34.802394	－118．192354
CP＿1352	PUB	DEPRESS	8	SQ＿FT	ISOLATE	栊 34.802397	－118．192338
CP＿1353	PUB	DEPRESS	5	SQ＿FT	ISOLATE	E 34.802386	－118．192333
CP＿1354	PUB	DEPRESS	75	SQ＿FT	ISOLATE	E 34.802276	－118．192178
CP＿1355	PUB	DEPRESS	33	SQ＿FT	ISOLATE	E 34.801973	－118．191824
CP＿1356	PUB	DEPRESS	121	SQ＿FT	ISOLATE	E 34．802078	－118．191823
CP＿1357	PUB	DEPRESS	24	SQ＿FT	ISOLATE	E 34.800755	－118．199103
CP＿1358－001	PUB	DEPRESS	51	SQ＿FT	ISOLATE	E 34.801262	－118．198852
CP＿1358－002	PUB	DEPRESS	100	SQ＿FT	ISOLATE	E 34.801262	－118．198852
CP＿1359－001	PUB	DEPRESS	14	SQ＿FT	ISOLATE		－118．198767
CP＿1359－002	PUB	DEPRESS	2	SQ＿FT	ISOLATE	根 34.801201	－118．198767
CP＿1360	PUB	DEPRESS	58	SQ＿FT	ISOLATE	E 34.801309	－118．198372
CP＿1361－001	PUB	DEPRESS	0.1	SQ＿FT	ISOLATE	E 34.801076	－118．198335
CP＿1361－002	PUB	DEPRESS	2	SQ＿FT	ISOLATE	E 34.801076	－118．198335
CP＿1361－003	PUB	DEPRESS	0.3	SQ＿FT	ISOLATE	E 34.801076	－118．198335
CP＿1361－004	PUB	DEPRESS	0.1	SQ＿FT	ISOLATE	栊 34.801076	－118．198335

CP_1361-005	PUB	DEPRESS	158	SQ_FT	ISOLATE	34.801076	-118.198335
CP_1361-006	PUB	DEPRESS	54	SQ_FT	ISOLATE	34.801076	-118.198335
CP_1361-007	PUB	DEPRESS	0.1	SQ_FT	ISOLATE	34.801076	-118.198335
CP_1361-008	PUB	DEPRESS	16	SQ_FT	ISOLATE	34.801076	-118.198335
CP_1362-001	PUB	DEPRESS	33	SQ_FT	ISOLATE	34.800982	-118.198091
CP_1362-002	PUB	DEPRESS	225	SQ_FT	ISOLATE	34.800982	-118.198091
CP-1363	PUB	DEPRESS	41	SQ_FT	ISOLATE	34.80004	-118.198061
CP_1364-001	PUB	DEPRESS	39	SQ_FT	ISOLATE	34.800792	-118.198028
CP_1364-002	PUB	DEPRESS	54	SQ_FT	ISOLATE	34.800792	-118.198028
CP_1365	PUB	DEPRESS	29	SQ_FT	ISOLATE	34.800875	-118.197901
CP_1366	PUB	DEPRESS	9	SQ_FT	ISOLATE	34.80049	-118.197451
CP_1367	PUB	DEPRESS	53	SQ_FT	ISOLATE	34.798967	-118.197422
CP_1368-001	PUB	DEPRESS	86	SQ_FT	ISOLATE	34.800575	-118.197392
CP_1368-002	PUB	DEPRESS	0.1	SQ_FT	ISOLATE	34.800575	-118.197392
CP_1369	PUB	DEPRESS	34	SQ_FT	ISOLATE	34.800976	-118.197285
CP_1370	PUB	DEPRESS	15	SQ_FT	ISOLATE	34.80089	-118.197258
CP_1371	PUB	DEPRESS	54	SQ_FT	ISOLATE	34.800672	-118.197196
CP-1372	PUB	DEPRESS	143	SQ_FT	ISOLATE	34.801191	-118.197154
CP_1373	PUB	DEPRESS	30	SQ_FT	ISOLATE	34.800942	-118.197095
CP_1374	PUB	DEPRESS	401	SQ_FT	ISOLATE	34.800991	-118.196908
CP_1375	PUB	DEPRESS	13	SQ_FT	ISOLATE	34.800718	-118.196887
CP_1376	PUB	DEPRESS	41	SQ_FT	ISOLATE	34.80085	-118.196736
CP_1377-001	PUB	DEPRESS	0.5	SQ_FT	ISOLATE	34.800251	-118.196728
CP_1377-002	PUB	DEPRESS	20	SQ_FT	ISOLATE	34.800251	-118.196728
CP_1377-003	PUB	DEPRESS	28	SQ_FT	ISOLATE	34.800251	-118.196728
CP_1377-004	PUB	DEPRESS	21	SQ_FT	ISOLATE	34.800251	-118.196728
CP-1378	PUB	DEPRESS	122	SQ_FT	ISOLATE	34.800371	-118.196714
CP_1379	PUB	DEPRESS	49	SQ_FT	ISOLATE	34.800503	-118.19671
CP_1380	PUB	DEPRESS	26	SQ_FT	ISOLATE	34.800448	-118.19669
CP_1381	PUB	DEPRESS	28	SQ_FT	ISOLATE	34.800469	-118.196678
CP_1382	PUB	DEPRESS	29	SQ_FT	ISOLATE	34.797324	-118.196654
CP_1383	PUB	DEPRESS	11	SQ_FT	ISOLATE	34.797295	-118.196649
CP_1384	PUB	DEPRESS	16	SQ_FT	ISOLATE	34.797254	-118.196623
CP_1385	PUB	DEPRESS	23	SQ_FT	ISOLATE	34.796879	-118.196403
CP-1386	PUB	DEPRESS	52	SQ_FT	ISOLATE	34.800294	-118.196364
CP_1387	PUB	DEPRESS	25	SQ_FT	ISOLATE	34.797076	-118.196159
CP_1388	PUB	DEPRESS	24	SQ_FT	ISOLATE	34.797051	-118.196148
CP_1389	PUB	DEPRESS	1018	SQ_FT	ISOLATE	34.796387	-118.195916
CP_1390	PUB	DEPRESS	35	SQ_FT	ISOLATE	34.798368	-118.19587
CP_1391	PUB	DEPRESS	60	SQ_FT	ISOLATE	34.798329	-118.195864
CP_1392	PUB	DEPRESS	24	SQ_FT	ISOLATE	34.798392	-118.195852
CP_1393	PUB	DEPRESS	21	SQ_FT	ISOLATE	34.797117	-118.195855
CP_-1394	PUB	DEPRESS	37	SQ_FT	ISOLATE	34.800312	-118.195687
CP_-1395	PUB	DEPRESS	9	SQ_FT	ISOLATE	34.800324	-118.195602
CP_1396	PUB	DEPRESS	20	SQ_FT	ISOLATE	34.796682	-118.195492
CP_1397	PUB	DEPRESS	53	SQ_FT	ISOLATE	34.801129	-118.195476
CP_1398	PUB	DEPRESS	15	SQ_FT	ISOLATE	34.801087	-118.195442
CP_1399	PUB	DEPRESS	66	SQ_FT	ISOLATE	34.7987	-118.195335
CP_1401	PUB	DEPRESS	26	SQ_FT	ISOLATE	34.797272	-118.194703
CP_1402	PUB	DEPRESS	46	SQ_FT	ISOLATE	34.797216	-118.194689
CP-1403	PUB	DEPRESS	21	SQ_FT	ISOLATE	34.798595	-118.194571
CP_1404	PUB	DEPRESS	270	SQ_FT	ISOLATE	34.797936	-118.194525
CP_1405	PUB	DEPRESS	12	SQ_FT	ISOLATE	34.798589	-118.194482
CP_1406	PUB	DEPRESS	12	SQ_FT	ISOLATE	34.798571	-118.194427
CP_1407	PUB	DEPRESS	42	SQ_FT	ISOLATE	34.797028	-118.194311
CP_1408-001	PUB	DEPRESS	20	SQ_FT	ISOLATE	34.796988	-118.194218
CP_1408-002	PUB	DEPRESS	2	SQ_FT	ISOLATE	34.796988	-118.194218
CP_1408-003	PUB	DEPRESS	26	SQ_FT	ISOLATE	34.796988	-118.194218
CP_1409	PUB	DEPRESS	100	SQ_FT	ISOLATE	34.798005	-118.194147
CP_1410-001	PUB	DEPRESS	38	SQ_FT	ISOLATE	34.796951	-118.194126
CP_1410-002	PUB	DEPRESS	2	SQ_FT	ISOLATE	34.796951	-118.194126
CP_1411	PUB	DEPRESS	58	SQ_FT	ISOLATE	34.796873	-118.194085
CP_1412	PUB	DEPRESS	44	SQ_FT	ISOLATE	34.798408	-118.19407
CP_1413-001	PUB	DEPRESS	0.1	SQ_FT	ISOLATE	34.796926	-118.194034
CP_1413-002	PUB	DEPRESS	29	SQ_FT	ISOLATE	34.796926	-118.194034
CP_1413-003	PUB	DEPRESS	2	SQ_FT	ISOLATE	34.796926	-118.194034

CP_1413-004	PUB	DEPRESS	16	SQ_FT	ISOLATE	34.796926	-118.194034
CP_1413-005	PUB	DEPRESS	0.1	SQ_FT	ISOLATE	34.796926	-118.194034
CP_1414	PUB	DEPRESS	27	SQ_FT	ISOLATE	34.796679	-118.193836
CP_1415	PUB	DEPRESS	24	SQ_FT	ISOLATE	34.796691	-118.1938
CP_1416	PUB	DEPRESS	4	SQ_FT	ISOLATE	34.800228	-118.193767
CP_1417	PUB	DEPRESS	19	SQ_FT	ISOLATE	34.796659	-118.193686
CP_1418	PUB	DEPRESS	87	SQ_FT	ISOLATE	34.798319	-118.193668
CP-1419	PUB	DEPRESS	42	SQ_FT	ISOLATE	34.800676	-118.193568
CP-1420	PUB	DEPRESS	20	SQ_FT	ISOLATE	34.800707	-118.193559
CP_1421	PUB	DEPRESS	39	SQ_FT	ISOLATE	34.800681	-118.19355
CP_142 2	PUB	DEPRESS	90	SQ_FT	ISOLATE	34.798328	-118.193549
CP_1423	PUB	DEPRESS	95	SQ_FT	ISOLATE	34.797913	-118.193382
CP_1424	PUB	DEPRESS	28	SQ_FT	ISOLATE	34.797975	-118.193106
CP_1425	PUB	DEPRESS	337	SQ_FT	ISOLATE	34.79785	-118.193001
CP_1427	PUB	DEPRESS	58	SQ_FT	ISOLATE	34.798498	-118.192782
CP_1428	PUB	DEPRESS	1427	SQ_FT	ISOLATE	34.799278	-118.192529
CP_1429	PUB	DEPRESS	615	SQ_FT	ISOLATE	34.79999953	-118.192276
CP-1430	PUB	DEPRESS	46	SQ_FT	ISOLATE	34.798364	-118.192098
CP_1431	PUB	DEPRESS	18	SQ_FT	ISOLATE	34.800646	-118.191882
CP_1432	PUB	DEPRESS	40	SQ_FT	ISOLATE	34.797988	-118.191875
CP_1433	PUB	DEPRESS	119	SQ_FT	ISOLATE	34.800623	-118.191796
CP_1434	PUB	DEPRESS	2113	SQ_FT	ISOLATE	34.800786	-118.191712
CP_1435	PUB	DEPRESS	288	SQ_FT	ISOLATE	34.799892	-118.191693
CP_1436	PUB	DEPRESS	10	SQ_FT	ISOLATE	34.800627	-118.191691
CP_1437	PUB	DEPRESS	12225	SQ_FT	ISOLATE	34.799726	-118.19162
CP-1438	PUB	DEPRESS	14	SQ_FT	ISOLATE	34.797335	-118.191466
CP_1439	PUB	DEPRESS	100	SQ_FT	ISOLATE	34.799467	-118.191421
CP_1440	PUB	DEPRESS	47	SQ_FT	ISOLATE	34.799557	-118.191412
CP_1441	PUB	DEPRESS	15	SQ_FT	ISOLATE	34.799585	-118.191403
CP_1442	PUB	DEPRESS	6	SQ_FT	ISOLATE	34.799604	-118.191378
CP_1443	PUB	DEPRESS	20	SQ_FT	ISOLATE	34.798686	-118.191106
CP_1444	PUB	DEPRESS	23	SQ_FT	ISOLATE	34.798876	-118.19083
CP_1445	PUB	DEPRESS	131	SQ_FT	ISOLATE	34.798935	-118.190767
CP_1446	PUB	DEPRESS	69	SQ_FT	ISOLATE	34.797634	-118.190715
CP-1447	PUB	DEPRESS	142	SQ_FT	ISOLATE	34.797557	-118.190634
CP_1448	PUB	DEPRESS	9	SQ_FT	ISOLATE	34.799107	-118.190546
CP_1449	PUB	DEPRESS	39	SQ_FT	ISOLATE	34.796928	-118.190495
CP_1450	PUB	DEPRESS	42	SQ_FT	ISOLATE	34.797965	-118.19029
CP_1451	PUB	DEPRESS	632	SQ_FT	ISOLATE	34.797452	-118.190286
CP_1452	PUB	DEPRESS	12	SQ_FT	ISOLATE	34.798033	-118.190219
CP_1453	PUB	DEPRESS	119	SQ_FT	ISOLATE	34.797908	-118.190174
CP_1454	PUB	DEPRESS	316	SQ_FT	ISOLATE	34.797583	-118.19012
CP-1455	PUB	DEPRESS	22	SQ_FT	ISOLATE	34.797496	-118.190027
CP_1456	PUB	DEPRESS	65	SQ_FT	ISOLATE	34.797813	-118.189967
CP_1457	PUB	DEPRESS	14	SQ_FT	ISOLATE	34.797625	-118.189895
CP_1458-001	PUB	DEPRESS	2	SQ_FT	ISOLATE	34.797672	-118.189852
CP_1458-002	PUB	DEPRESS	9	SQ_FT	ISOLATE	34.797672	-118.189852
CP_1459-001	PUB	DEPRESS	0.3	SQ_FT	ISOLATE	34.797633	-118.189844
CP_1459-002	PUB	DEPRESS	47	SQ_FT	ISOLATE	34.797633	-118.189844
CP_1460	PUB	DEPRESS	349	SQ_FT	ISOLATE	34.79763	-118.189481
CP_1461	PUB	DEPRESS	266	SQ_FT	ISOLATE	34.797894	-118.189476
CP-1462	PUB	DEPRESS	26	SQ_FT	ISOLATE	34.798621	-118.189277
CP_1463	PUB	DEPRESS	424	SQ_FT	ISOLATE	34.797165	-118.189198
CP_1464-001	PUB	DEPRESS	0.7	SQ_FT	ISOLATE	34.796584	-118.189186
CP_1464-002	PUB	DEPRESS	17	SQ_FT	ISOLATE	34.796584	-118.189186
CP_1464-003	PUB	DEPRESS	17	SQ_FT	ISOLATE	34.796584	-118.189186
CP_1465	PUB	DEPRESS	10	SQ_FT	ISOLATE	34.797563	-118.189112
CP_1466	PUB	DEPRESS	23	SQ_FT	ISOLATE	34.797705	-118.18906
CP_1467	PUB	DEPRESS	42	SQ_FT	ISOLATE	34.797492	-118.188908
CP_1468	PUB	DEPRESS	90	SQ_FT	ISOLATE	34.797461	-118.188769
CP-1469	PUB	DEPRESS	41	SQ_FT	ISOLATE	34.798004	-118.188749
CP_1470	PUB	DEPRESS	26	SQ_FT	ISOLATE	34.798026	-118.188747
CP_1471	PUB	DEPRESS	21	SQ_FT	ISOLATE	34.797516	-118.188601
CP_1472	PUB	DEPRESS	16	SQ_FT	ISOLATE	34.797949	-118.188578
CP_1473	PUB	DEPRESS	12	SQ_FT	ISOLATE	34.797518	-118.188571
CP_1474	PUB	DEPRESS	57	SQ_FT	ISOLATE	34.79739	-118.188546

CP_1475	PUB	DEPRESS	74	SQ_FT	ISOLATE	34.797521	-118.188517
CP_1476	PUB	DEPRESS	12	SQ_FT	ISOLATE	34.797844	-118.188394
CP_1477	PUB	DEPRESS	87	SQ_FT	ISOLATE	34.797281	-118.188355
CP_1478	PUB	DEPRESS	36	SQ_FT	ISOLATE	34.797455	-118.188349
CP_1479	PUB	DEPRESS	23	SQ_FT	ISOLATE	34.798645	-118.188303
CP_1480	PUB	DEPRESS	22	SQ_FT	ISOLATE	34.79844	-118.188157
CP_1481	PUB	DEPRESS	8	SQ_FT	ISOLATE	34.797692	-118.18808
CP-1482	PUB	DEPRESS	281	SQ_FT	ISOLATE	34.797221	-118.188044
CP-1483	PUB	DEPRESS	38	SQ_FT	ISOLATE	34.797148	-118.187943
CP_1484	PUB	DEPRESS	327	SQ_FT	ISOLATE	34.797084	-118.187837
CP_1485	PUB	DEPRESS	17	SQ_FT	ISOLATE	34.797833	-118.187579
CP_1486	PUB	DEPRESS	13	SQ_FT	ISOLATE	34.795603	-118.187499
CP_1487	PUB	DEPRESS	136	SQ_FT	ISOLATE	34.795703	-118.187461
CP-1488	PUB	DEPRESS	50	SQ_FT	ISOLATE	34.797588	-118.187448
CP_1489	PUB	DEPRESS	1639	SQ_FT	ISOLATE	34.795513	-118.187402
CP_1490-001	PUB	DEPRESS	102	SQ_FT	ISOLATE	34.797033	-118.187254
CP_1490-002	PUB	DEPRESS	34	SQ_FT	ISOLATE	34.797033	-118.187254
CP-1491	PUB	DEPRESS	468	SQ_FT	ISOLATE	34.796188	-118.187175
CP-1492	PUB	DEPRESS	29	SQ_FT	ISOLATE	34.798339	-118.187153
CP-1493	PUB	DEPRESS	176	SQ_FT	ISOLATE	34.798498	-118.187151
CP_1494	PUB	DEPRESS	45	SQ_FT	ISOLATE	34.797398	-118.1871
CP_1495-001	PUB	DEPRESS	3	SQ_FT	ISOLATE	34.797001	-118.187087
CP_1495-002	PUB	DEPRESS	81	SQ_FT	ISOLATE	34.797001	-118.187087
CP_1495-003	PUB	DEPRESS	44	SQ_FT	ISOLATE	34.797001	-118.187087
CP_1495-004	PUB	DEPRESS	22	SQ_FT	ISOLATE	34.797001	-118.187087
CP_1496	PUB	DEPRESS	61	SQ_FT	ISOLATE	34.798494	-118.187061
CP_1497	PUB	DEPRESS	85	SQ_FT	ISOLATE	34.795932	-118.187017
CP_1498	PUB	DEPRESS	39	SQ_FT	ISOLATE	34.795107	-118.186972
CP_1499-001	PUB	DEPRESS	6	SQ_FT	ISOLATE	34.797033	-118.186958
CP_1499-002	PUB	DEPRESS	6	SQ_FT	ISOLATE	34.797033	-118.186958
CP_1499-003	PUB	DEPRESS	2	SQ_FT	ISOLATE	34.797033	-118.186958
CP_1499-004	PUB	DEPRESS	34	SQ_FT	ISOLATE	34.797033	-118.186958
CP_1500-001	PUB	DEPRESS	0.4	SQ_FT	ISOLATE	34.797045	-118.186877
CP_1500-002	PUB	DEPRESS	3	SQ_FT	ISOLATE	34.797045	-118.186877
CP_1500-003	PUB	DEPRESS	62	SQ_FT	ISOLATE	34.797045	-118.186877
CP_1501	PUB	DEPRESS	368	SQ_FT	ISOLATE	34.795805	-118.186867
CP_1502-001	PUB	DEPRESS	0.2	SQ_FT	ISOLATE	34.797086	-118.18685
CP_1502-002	PUB	DEPRESS	14	SQ_FT	ISOLATE	34.797086	-118.18685
CP_1502-003	PUB	DEPRESS	11	SQ_FT	ISOLATE	34.797086	-118.18685
CP_1503	PUB	DEPRESS	11	SQ_FT	ISOLATE	34.797049	-118.186769
CP_1504	PUB	DEPRESS	848	SQ_FT	ISOLATE	34.794846	-118.18675
CP_1505	PUB	DEPRESS	12	SQ_FT	ISOLATE	34.797058	-118.186685
CP-1506	PUB	DEPRESS	14	SQ_FT	ISOLATE	34.79772	-118.186684
CP_1507	PUB	DEPRESS	9	SQ_FT	ISOLATE	34.797045	-118.186664
CP_1508	PUB	DEPRESS	93	SQ_FT	ISOLATE	34.797728	-118.186635
CP_1509	PUB	DEPRESS	23	SQ_FT	ISOLATE	34.797917	-118.186634
CP_1510-001	PUB	DEPRESS	11	SQ_FT	ISOLATE	34.797035	-118.186591
CP_1510-002	PUB	DEPRESS	2	SQ_FT	ISOLATE	34.797035	-118.186591
CP_1510-003	PUB	DEPRESS	15	SQ_FT	ISOLATE	34.797035	-118.186591
CP_1511	PUB	DEPRESS	105	SQ_FT	ISOLATE	34.797187	-118.186542
CP_1512-001	PUB	DEPRESS	48	SQ_FT	ISOLATE	34.797084	-118.186429
CP_1512-002	PUB	DEPRESS	52	SQ_FT	ISOLATE	34.797084	-118.186429
CP_1513	PUB	DEPRESS	22	SQ_FT	ISOLATE	34.79709	-118.186366
CP_1514	PUB	DEPRESS	8	SQ_FT	ISOLATE	34.797067	-118.186232
CP_1515	PUB	DEPRESS	23	SQ_FT	ISOLATE	34.799291	-118.185847
CP_1516-001	PUB	DEPRESS	0.3	SQ_FT	ISOLATE	34.796984	-118.185315
CP_1516-002	PUB	DEPRESS	3	SQ_FT	ISOLATE	34.796984	-118.185315
CP_1516-003	PUB	DEPRESS	12	SQ_FT	ISOLATE	34.796984	-118.185315
CP_1517	PUB	DEPRESS	958	SQ_FT	ISOLATE	34.799268	-118.185302
CP_1518	PUB	DEPRESS	18	SQ_FT	ISOLATE	34.796973	-118.185212
CP-1519	PUB	DEPRESS	359	SQ_FT	ISOLATE	34.798882	-118.185178
CP_1520-001	PUB	DEPRESS	45	SQ_FT	ISOLATE	34.798686	-118.185126
CP_1520-002	PUB	DEPRESS	1	SQ_FT	ISOLATE	34.798686	-118.185126
CP_1521-001	PUB	DEPRESS	0.3	SQ_FT	ISOLATE	34.796962	-118.185086
CP_1521-002	PUB	DEPRESS	81	SQ_FT	ISOLATE	34.796962	-118.185086
CP_1522	PUB	DEPRESS	956	SQ_FT	ISOLATE	34.798017	-118.1849

CP_1523	PUB	DEPRESS	58	SQ_FT	ISOLATE	34.797635	-118.184876
CP_1524	PUB	DEPRESS	105	SQ_FT	ISOLATE	34.797673	-118.184861
CP_1525	PUB	DEPRESS	413	SQ_FT	ISOLATE	34.797422	-118.184836
CP_1526	PUB	DEPRESS	3595	SQ_FT	ISOLATE	34.796622	-118.184816
CP_1527-001	PUB	DEPRESS	43	SQ_FT	ISOLATE	34.798751	-118.184759
CP_1527-002	PUB	DEPRESS	85	SQ_FT	ISOLATE	34.798751	-118.184759
CP_1528	PUB	DEPRESS	47	SQ_FT	ISOLATE	34.796732	-118.1845
CP_3339-053	PUB	DEPRESS	9	SQ_FT	ISOLATE	34.797347	-118.196711
CP_3341-001	PUB	DEPRESS	0.6	SQ_FT	ISOLATE	34.797209	-118.196246
CP_3341-002	PUB	DEPRESS	0.4	SQ_FT	ISOLATE	34.797209	-118.196246
CP_3341-003	PUB	DEPRESS	0.1	SQ_FT	ISOLATE	34.797209	-118.196246
CP_3342-047	PUB	DEPRESS	15	SQ_FT	ISOLATE	34.796792	-118.194015
CP_3343-001	PUB	DEPRESS	0.1	SQ_FT	ISOLATE	34.796772	-118.193844
CP_3343-002	PUB	DEPRESS	1	SQ_FT	ISOLATE	34.796772	-118.193844
CP_3345-001	PUB	DEPRESS	0.2	SQ_FT	ISOLATE	34.796573	-118.189389
CP_3345-002	PUB	DEPRESS	0.1	SQ_FT	ISOLATE	34.796573	-118.189389
CP_3345-003	PUB	DEPRESS	1	SQ_FT	ISOLATE	34.796573	-118.189389
CP_3345-004	PUB	DEPRESS	2	SQ_FT	ISOLATE	34.796573	-118.189389
CP_3345-005	PUB	DEPRESS	17	SQ_FT	ISOLATE	34.796573	-118.189389
CP_3346-001	PUB	DEPRESS	3	SQ_FT	ISOLATE	34.797082	-118.185686
CP_3346-002	PUB	DEPRESS	0.3	SQ_FT	ISOLATE	34.797082	-118.185686.

SOURCE: ESR/IUSGS Topographic Basemap (2016); USGG 30m Hillshade (2015); Phase 48
from CaHSRA (4/2016); Watershed Boundary DatasetNational Hydrography Dataset (2015).

Study Area in the Sacatara Creek Kings Canyon Watershed Sacatara Creek - KingsOther HUC-10 Watersheds

Wetlands Study Area \square Wetlands Study Area \ldots Direction of flow based on Direction of flow
NHD flowlines

Sacatara Creek
Kings Canyon Watershed Hydrologic Connectivity

Sacatara Creek - Kings Canyon Watershed HUC-10	Antelope Valley Watershed (as described in SPL-2011-01084-SLP)

Kern County 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Kern County 2010 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Los Angeles County 2011 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Los Angeles County 2013 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.
Aerial Sources: http://maps.co.kern.ca.us/arcgis/services/ and http://gis.apfo.usda.gov/arcgis/services/NAIP/
Retrieved November 14, 2016.

APPROVED JURISDICTIONAL DETERMINATION FORM U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): August 25, 2017

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: SPL-2010-00945-VCL-JD-7
C. PROJECT LOCATION AND BACKGROUND INFORMATION:

State: CA County/parish/borough: Los Angeles County City: N/A
Center coordinates of site (lat/long in degree decimal format): Lat. $34.79088^{\circ} \mathbf{N}$, Long. $118.18622^{\circ} \mathbf{W}$.
Universal Transverse Mercator: 391478 m E, 38504 m N
Name of nearest waterbody: Piute Ponds
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: N/A Name of watershed or Hydrologic Unit Code (HUC): Piute Ponds, California, HUC-12 \#180902061502
Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
\boxtimes Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

\boxtimes Office (Desk) Determination. Date: July 25, 2017
Field Determination. Date(s):

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

Waters subject to the ebb and flow of the tide.
Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.
Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There Are no "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
a. Indicate presence of waters of U.S. in review area (check all that apply): ${ }^{1}$
$\square \quad$ TNWs, including territorial seas
Wetlands adjacent to TNWs
Relatively permanent waters ${ }^{2}$ (RPWs) that flow directly or indirectly into TNWs
Non-RPWs that flow directly or indirectly into TNWs
Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
Impoundments of jurisdictional waters
Isolated (interstate or intrastate) waters, including isolated wetlands
b. Identify (estimate) size of waters of the U.S. in the review area:

Non-wetland waters: linear feet: width (ft) and/or acres.
Wetlands: acres.
c. Limits (boundaries) of jurisdiction based on: Not Applicable.

Elevation of established OHWM (if known):
2. Non-regulated waters/wetlands (check if applicable): ${ }^{3}$
\boxtimes Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain:
Within the project area of the Piute Ponds HUC 10, there are a total of 173 aquatic features. These features include 14 unnamed ephemeral desert wash stream features, 19 segments of ephemeral ditches, and 140 claypan features. Ephemeral desert wash streams span a total of approximately 9,953 linear feet (1.89 miles) and cover approximately 0.65 acre; ephemeral ditches span a total of approximately $\mathbf{3 , 9 0 0}$ linear feet (0.74 mile), and cover approximately 0.27 acre; and claypan features cover approximately

[^22]0.97 acres. Labeled maps and tables of features and dimensions are provided in the Aquatic Resources Delineation Report, which identifies each feature according to which HUC-12 watershed it occurs within.

The unnamed ephemeral desert washes, features Str_0375, Str_0383 through Str_0386, Str_0388 through Str_0390, and Str_0396 through $\operatorname{Str} \mathbf{0 3 9 8}$ generally flow east within the study area. Where these aquatic features approach existing roads, the water flows into ditches. Ephemeral ditches, features Ditch_0387 (multiple segments) and Ditch_0391 through Ditch 0395 (multiple segments), move water along 30th Street West and along West Avenue C, generally following along road shoulders until reaching culverts where the water flows under the road, or low points where the water flows across the road, rejoining natural features or sheet flow that convey the water further east toward Rosamond Dry Lake. Note that some wash and ditch features have multiple segments and are labeled as such in attached tables (e.g. Ditch_0387-001, Ditch_0387-002, etc.). Most of the ephemeral desert wash and ditch features dissipate and do not have defined channels that can be traced all the way down to the terminal point in the watershed. These features are similar to many other streams in the Antelope Valley Watershed that have well-defined channels where they originate in the mountains and foothills, but dissipate on the valley floor, where water movement during storms is primarily sheet flow.

Ephemeral and intermittent claypan features, CP_1400, CP_1426, CP_1529 through CP_1630, CP_1632, CP_1633, CP_1636, CP_1638 through CP_1662, and CP_1664, are scattered throughout the study area due to the relatively flat topography. These lowlying depressional features are ephemeral or intermittent and typically hold water for a few weeks annually.

All aquatic features within the study area are ephemeral or intermittent and are not used for commerce. The hydrologic connection to the low point in the Antelope Valley watershed, Rogers, Rosamond, and Buckhorn Dry Lakes, is primarily through sheet flow during storms. A review of topographic maps and watershed boundary datasets indicates that waters from the study area drain toward Rosamond Dry Lake.

There are no Traditional Navigable Waters (TNWs) or Relatively Permanent Waters (RPWs) in the study area, and the ephemeral desert streams in the study area are not tributaries to RPWs or TNWs. A previous SWANCC watershed-level Approved JD for Antelope Valley (HUC10 \#s 1809020609 through 1809020624, excluding those portions of HUC12s 18090206151, 1901902061102, and 180902061103 that drain toward Lake Palmdale and its tributaries) determined that Rosamond, Buckhorn, and Rogers Dry Lakes, and their tributaries, (i.e. the Antelope Valley Watershed, excluding Lake Palmdale and tributaries to Lake Palmdale) are nonjurisdictional waters of the United States under SWANCC. This determination, SPL-2011-01084-SLP, dated June 7, 2013, found that these Antelope Valley waters are not tributary to either a TNW or an (a)(3) water and Rosamond, Buckhorn, and Rogers Dry Lakes are not (a)(3) waters themselves. The Corps made this watershed conclusion because the Antelope Valley watershed is an isolated, intrastate watershed without any surface water related interstate commerce. This previous determination is still in effect, and is appended as a supporting document for this determination.

The above is based upon the review of aerial photographs (Google Earth, accessed July 25, 2017) that also did not show surface water usage of the project drainages or the Rosamond Dry Lake terminus. Since the Rosamond Dry Lake is an intrastate, isolated water without a surface water connection to commerce (see prior AJD file No. SPL-2011-01084-SLP), the subject 14 unnamed ephemeral desert wash stream features, 19 segments of ephemeral ditches, and 140 claypan features, as part of the same overall system, are also isolated and additionally have no nexus to commerce.

Based on the information above, the subject drainages 33 unnamed ephemeral desert stream features (14 unnamed ephemeral desert wash stream features, 19 segments of ephemeral ditches, and 140 claypan features), are NONJURISDICTIONAL waters of the United States, since the waters are NOT tributary to either a TNW or an (a)(3) water and are NOT (a)(3) waters themselves. The Corps makes such a conclusion since the waters are tribuatary to an isolated, intrastate dry lake.

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A. 1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A. 1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW:
Summarize rationale supporting determination:
2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent":

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody ${ }^{4}$ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B. 1 for the tributary, Section III.B. 2 for any onsite wetlands, and Section III.B. 3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
(i) General Area Conditions:
Watershed size: \quad Pick List
Drainage area: \quad Pick List
Average annual rainfall: \quad inches
Average annual snowfall: \quad inches
(ii) Physical Characteristics:
(a) Relationship with TNW:

Tributary flows directly into TNW.Tributary flows through Pick List tributaries before entering TNW.
Project waters are Pick List river miles from TNW.
Project waters are Pick List river miles from RPW.
Project waters are Pick List aerial (straight) miles from TNW.
Project waters are Pick List aerial (straight) miles from RPW.
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW^{5} :
Tributary stream order, if known:

[^23](b) General Tributary Characteristics (check all that apply): Tributary is:
\square Natural
Artificial (man-made). Explain:Manipulated (man-altered). Explain:
Tributary properties with respect to top of bank (estimate):

Average width: \quad feet	
Average depth:	feet
Average side slopes:	Pick List.

Primary tributary substrate composition (check all that apply):

\square Silts	\square Sands	\square Concrete
\square Cobbles	\square Gravel	\square Muck
\square Bedrock	\square Vegetation. Type/\% cover:	
\square Other. Explain:	.	

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain:
Presence of run/riffle/pool complexes. Explain:
Tributary geometry: Pick List
Tributary gradient (approximate average slope): \%
(c) Flow:

Tributary provides for: Pick List
Estimate average number of flow events in review area/year: Pick List
Describe flow regime:
Other information on duration and volume:
Surface flow is: Pick List. Characteristics:
Subsurface flow: Pick List. Explain findings:
\square Dye (or other) test performed:
Tributary has (check all that apply):
\square Bed and banks
$\square \mathrm{OHWM}^{6}$ (check all indicators that apply):

\square clear, natural line impressed on the bank	\square the presence of litter and debris	
\square changes in the character of soil	\square destruction of terrestrial vegetation	
\square shelving	\square the presence of wrack line	
\square vegetation matted down, bent, or absent	\square sediment sorting	
\square leaf litter disturbed or washed away	\square	scour
\square sediment deposition	\square multiple observed or predicted flow events	
\square water staining	\square	abrupt change in plant community
\square other (list):		
Discontinuous OHWM. ${ }^{7}$ Explain:		

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
\square High Tide Line indicated by:
Mean High Water Mark indicated by:oil or scum line along shore objects \square survey to available datum;fine shell or debris deposits (foreshore)physical markings;physical markings/characteristicsvegetation lines/changes in vegetation types.
\square tidal gauges
other (list):

(iii) Chemical Characteristics:

Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain:
Identify specific pollutants, if known:

[^24](iv) Biological Characteristics. Channel supports (check all that apply):
\square Riparian corridor. Characteristics (type, average width):
\square Wetland fringe. Characteristics:
Habitat for:Federally Listed species. Explain findings:Fish/spawn areas. Explain findings:
\square Other environmentally-sensitive species. Explain findings:Aquatic/wildlife diversity. Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics:

Properties:
Wetland size: acres
Wetland type. Explain:
Wetland quality. Explain:
Project wetlands cross or serve as state boundaries. Explain:
(b) General Flow Relationship with Non-TNW:

Flow is: Pick List. Explain:
Surface flow is: Pick List Characteristics:

Subsurface flow: Pick List. Explain findings:Dye (or other) test performed:
(c) Wetland Adjacency Determination with Non-TNW:Directly abuttingNot directly abutting
\square Discrete wetland hydrologic connection. Explain:
\square Ecological connection. Explain:
Separated by berm/barrier. Explain:
(d) Proximity (Relationship) to TNW

Project wetlands are Pick List river miles from TNW.
Project waters are Pick List aerial (straight) miles from TNW.
Flow is from: Pick List.
Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain:
Identify specific pollutants, if known:
(iii) Biological Characteristics. Wetland supports (check all that apply):
\square Riparian buffer. Characteristics (type, average width):
\square Vegetation type/percent cover. Explain:
\square Habitat for:
\square Federally Listed species. Explain findings:
\square Fish/spawn areas. Explain findings:Other environmentally-sensitive species. Explain findings:Aquatic/wildlife diversity. Explain findings:
3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in the cumulative analysis: Pick List
Approximately () acres in total are being considered in the cumulative analysis.

For each wetland, specify the following:
Directly abuts? (Y/N) Size (in acres) \quad Directly abuts? (Y/N) Size (in acres)

Summarize overall biological, chemical and physical functions being performed:

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:
3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:TNWs: linear feet width (ft), Or, acres.
Wetlands adjacent to TNWs: acres.
2. RPWs that flow directly or indirectly into TNWs.
\square Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
\square Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):
\square Tributary waters: linear feet width (ft).
\square Other non-wetland waters: acres. Identify type(s) of waters: .
3. Non-RPWs ${ }^{8}$ that flow directly or indirectly into TNWs.
\square Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):
\square Tributary waters: linear feet width (ft).
\square Other non-wetland waters: acres.
Identify type(s) of waters: .
4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
\square Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:
\square Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

Provide acreage estimates for jurisdictional wetlands in the review area:
acres.
5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
\square Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.
6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.
7. Impoundments of jurisdictional waters. ${ }^{9}$

As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
Demonstrate that impoundment was created from "waters of the U.S.," or
\square Demonstrate that water meets the criteria for one of the categories presented above (1-6), orDemonstrate that water is isolated with a nexus to commerce (see E below).

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY): ${ }^{10}$

\square which are or could be used by interstate or foreign travelers for recreational or other purposes.
\square from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
\square which are or could be used for industrial purposes by industries in interstate commerce.
\square Interstate isolated waters. Explain:Other factors. Explain:
Identify water body and summarize rationale supporting determination:

[^25]Provide estimates for jurisdictional waters in the review area (check all that apply):

Tributary waters: linear feet width (ft).Other non-wetland waters: acres. Identify type(s) of waters:Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

\square If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
\boxtimes Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
\boxtimes Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR).
Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain:
Other: (explain, if not covered above):
Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
® Non-wetland waters (i.e., rivers, streams): approximately 9,953 linear feet averaging 2 to $\mathbf{4 f t}$ in width (ft).
\square Lakes/ponds: acres.
Other non-wetland waters: 1.24 acres. List type of aquatic resource: Claypans 0.97 acres and Ditches 0.27 acres.
\square Wetlands: acres
Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply):

\square	Non-wetland waters (i.e., rivers, streams): linear feet, width (ft).
\square	Lakes/ponds: acres.
\square	Other non-wetland waters: acres. List type of aquatic resource:
\square	Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Features are depicted on Map Sheets 139-141, 166, and 168-171 in Appendix E of the submitted delineation. .
\boxtimes Data sheets prepared/submitted by or on behalf of the applicant/consultant.
\square Office concurs with data sheets/delineation report.
\square Office does not concur with data sheets/delineation report.
\square Data sheets prepared by the Corps:
Corps navigable waters' study:
U.S. Geological Survey Hydrologic Atlas: See attached figures for NHD flowlines and HUC boundaries. \boxtimes USGS NHD data. \boxtimes USGS 8 and 12 digit HUC maps.
U.S. Geological Survey map(s). Cite scale \& quad name: Rosamond, Palmdale, 7.5 minute quadrangles. USDA Natural Resources Conservation Service Soil Survey. Citation:
\square National wetlands inventory map(s). Cite name:
\square State/Local wetland inventory map(s):
FEMA/FIRM maps:
\square 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929)
\boxtimes Photographs: \boxtimes Aerial (Name \& Date): NAIP Imagery 2005 and 2014 at 1-m resolution; LA County Imagery 2011 and 2013 at a 1-foot resolution.
\qquad \square Other (Name \& Date):
\boxtimes Previous determination(s). File no. and date of response letter: SPL-2011-01084-SLP, June 7, 2013.
\square Applicable/supporting case law:
\square Applicable/supporting scientific literature:
\boxtimes Other information (please specify): Aquatic Resources Delineation Report prepared by the applicant/consultant references additional materials; also Appendix E contains map sheets; Appendix F contains dimensions. HUC watershed maps of review areas with NHD Data provided by the applicant/consultant; general use of NAIP Imagery 2009, 2010, and 2012 at 1-m resolution; LA County Imagery 2015 at 1 -foot resolution; 2015 Site specific IR Imagery, 3-inch color pixel; Bing Aerial Imagery - multiple years (scale
dependent); ESRI World Imagery (streaming service) multiple years (scale dependent); Google Earth Historic Photos (used for reference and includes portions from above listed sources).

B. ADDITIONAL COMMENTS TO SUPPORT JD:							
Waters_Name	Cowa	_Code H		Amount	Units	Waters_Type Latitude	Longitude
Str_0375	R6	RIVERINE	0.14	ACRE	ISOLATE	34.79476795	-118.1935542
Str_0383-001	R6	RIVERINE	0.1	SQ_FT	ISOLATE	34.79313089	-118.1935022
Str_0383-002	R6	RIVERINE	15	SQ_FT	ISOLATE	34.79313387	-118.193526
Str_0383-003	R6	RIVERINE	104	SQ_FT	ISOLATE	34.79314576	-118.1936325
Str_0383-004	R6	RIVERINE	0.01	ACRE	ISOLATE	34.79335376	-118.1938654
Str_0384	R6	RIVERINE	39	SQ_FT	ISOLATE	34.79321644	-118.1938732
Str_0385	R6	RIVERINE	0.03	ACRE	ISOLATE	34.79253608	-118.1923106
Str_0386	R6	RIVERINE	0.04	ACRE	ISOLATE	34.79198903	-118.1903849
Ditch_0387-001	R6	RIVERINE	0.04	ACRE	ISOLATE	34.79137	-118.1895874
Ditch_0387-002	R6	RIVERINE	133	SQ_FT	ISOLATE	34.79146775	-118.1878928
Ditch_0387-003	R6	RIVERINE	0.7	SQ_FT	ISOLATE	34.7914777	-118.1877988
Ditch_0387-004	R6	RIVERINE	0.03	ACRE	ISOLATE	34.79149783	-118.1870111
Ditch_0387-005	R6	RIVERINE	4	SQ_FT	ISOLATE	34.79151643	-118.1861691
Str_0388	R6	RIVERINE	0.17	ACRE	ISOLATE	34.79255307	-118.1875324
Str_0389	R6	RIVERINE	0.08	ACRE	ISOLATE	34.79157185	-118.1874733
Str_0390	R6	RIVERINE	0.07	ACRE	ISOLATE	34.79095079	-118.1869502
Ditch_0391	R6	RIVERINE	0.04	ACRE	ISOLATE	34.79123813	-118.1856591
Ditch_0392-001	R6	RIVERINE	0.2	SQ_FT	ISOLATE	34.7883347	-118.1847854
Ditch_0392-002	R6	RIVERINE	110	SQ_FT	ISOLATE	34.78829137	-118.1847917
Ditch_0392-003	R6	RIVERINE	3	SQ_FT	ISOLATE	34.78835793	-118.1847869
Ditch_0392-004	R6	RIVERINE	315	SQ_FT	ISOLATE	34.78859215	-118.1847965
Ditch_0392-005	R6	RIVERINE	16	SQ_FT	ISOLATE	34.78929259	-118.1847988
Ditch_0392-006	R6	RIVERINE	0.02	ACRE	ISOLATE	34.78944706	-118.1847984
Ditch_0392-007	R6	RIVERINE	57	SQ_FT	ISOLATE	34.79081904	-118.1848122
Ditch_0392-008	R6	RIVERINE	8	SQ_FT	ISOLATE	34.79088403	-118.1848133
Ditch_0392-009	R6	RIVERINE	2	SQ_FT	ISOLATE	34.7909082	-118.1848141
Ditch_0392-010	R6	RIVERINE	271	SQ_FT	ISOLATE	34.79114743	-118.1848141
Ditch_0393	R6	RIVERINE	0.05	ACRE	ISOLATE	34.79246143	-118.1847958
Ditch_0394	R6	RIVERINE	0.04	ACRE	ISOLATE	34.79228552	-118.1845449
Ditch_0395	R6	RIVERINE	0.03	ACRE	ISOLATE	34.79151897	-118.1839038
Str_0396	R6	RIVERINE	0.08	ACRE	ISOLATE	34.78777903	-118.1823926
Str_0397b	R6	RIVERINE	0.01	ACRE	ISOLATE	34.7866508	-118.1841345
Str_0398a	R6	RIVERINE	0.02	ACRE	ISOLATE	34.7867349	-118.181833
CP_1400	PUB	DEPRESS	38	SQ_FT	ISOLATE	34.795211	-118.194843
CP_1426	PUB	DEPRESS	210	SQ_FT	ISOLATE	34.795178	-118.192932
CP_1529	PUB	DEPRESS	55	SQ_FT	ISOLATE	34.793186	-118.193713
CP_1530	PUB	DEPRESS	22	SQ_FT	ISOLATE	34.79313	-118.193551
CP_1531	PUB	DEPRESS	600	SQ_FT	ISOLATE	34.79434	-118.193523
CP-1532	PUB	DEPRESS	58	SQ_FT	ISOLATE	34.793135	-118.193503
CP-1533	PUB	DEPRESS	96	SQ_FT	ISOLATE	34.794641	-118.193421
CP_1534	PUB	DEPRESS	16	SQ_FT	ISOLATE	34.794516	-118.193262
CP_1535	PUB	DEPRESS	29	SQ_FT	ISOLATE	34.792382	-118.192192
CP_1536	PUB	DEPRESS	8	SQ_FT	ISOLATE	34.792866	-118.191899
CP_1537	PUB	DEPRESS	32	SQ_FT	ISOLATE	34.792884	-118.191828
CP_1538	PUB	DEPRESS	141	SQ_FT	ISOLATE	34.792398	-118.191435
CP_1539	PUB	DEPRESS	493	SQ_FT	ISOLATE	34.792492	-118.191428
CP-1540	PUB	DEPRESS	45	SQ_FT	ISOLATE	34.79201	-118.191223
CP_1541-001	PUB	DEPRESS	0.2	SQ_FT	ISOLATE	34.791995	-118.191006
CP_1541-002	PUB	DEPRESS	157	SQ_FT	ISOLATE	34.791995	-118.191006
CP_1541-003	PUB	DEPRESS	0.1	SQ_FT	ISOLATE	34.791995	-118.191006
CP_1541-004	PUB	DEPRESS	107	SQ_FT	ISOLATE	34.791995	-118.191006
CP_1542	PUB	DEPRESS	48	SQ_FT	ISOLATE	34.792546	-118.190968
CP_1543	PUB	DEPRESS	65	SQ_FT	ISOLATE	34.792522	-118.190884
CP-1544	PUB	DEPRESS	16	SQ_FT	ISOLATE	34.792868	-118.190525
CP_1545	PUB	DEPRESS	40	SQ_FT	ISOLATE	34.792252	-118.190519
CP-1546	PUB	DEPRESS	117	SQ_FT	ISOLATE	34.791772	-118.190294
CP_1547	PUB	DEPRESS	13	SQ_FT	ISOLATE	34.793171	-118.19015
CP_1548	PUB	DEPRESS	52	SQ_FT	ISOLATE	34.791714	-118.189891
CP_1549	PUB	DEPRESS	15	SQ_FT	ISOLATE	34.792514	-118.189705
CP_1550-001	PUB	DEPRESS	16	SQ_FT	ISOLATE	34.791645	-118.189571

CP_1550-002	PUB	DEPRESS	17	SQ_FT	ISOLATE	34.791645	-118.189571
CP_1551-001	PUB	DEPRESS	11	SQ_FT	ISOLATE	34.791622	-118.1895
CP_1551-002	PUB	DEPRESS	10	SQ_FT	ISOLATE	34.791622	-118.1895
CP_1552	PUB	DEPRESS	36	SQ_FT	ISOLATE	34.793681	-118.189265
CP_1553-001	PUB	DEPRESS	1	SQ_FT	ISOLATE	34.791384	-118.189233
CP_1553-002	PUB	DEPRESS	15	SQ_FT	ISOLATE	34.791384	-118.189233
CP_1554	PUB	DEPRESS	24	SQ_FT	ISOLATE	34.791397	-118.189229
CP-1555	PUB	DEPRESS	86	SQ_FT	ISOLATE	34.791944	-118.189189
CP-1556	PUB	DEPRESS	105	SQ_FT	ISOLATE	34.79139	-118.188966
CP_1557	PUB	DEPRESS	31	SQ_FT	ISOLATE	34.790531	-118.188824
CP_1558	PUB	DEPRESS	631	SQ_FT	ISOLATE	34.791071	-118.188525
CP_1559	PUB	DEPRESS	13	SQ_FT	ISOLATE	34.791786	-118.188473
CP_1560	PUB	DEPRESS	153	SQ_FT	ISOLATE	34.791298	-118.18811
CP_1561	PUB	DEPRESS	42	SQ_FT	ISOLATE	34.791533	-118.188107
CP_1562	PUB	DEPRESS	91	SQ_FT	ISOLATE	34.791534	-118.188031
CP_1563	PUB	DEPRESS	71	SQ_FT	ISOLATE	34.791463	-118.187992
CP_1564	PUB	DEPRESS	11	SQ_FT	ISOLATE	34.790498	-118.187845
CP-1565	PUB	DEPRESS	27	SQ_FT	ISOLATE	34.791473	-118.187814
CP-1566	PUB	DEPRESS	59	SQ_FT	ISOLATE	34.790308	-118.187807
CP_1567	PUB	DEPRESS	15	SQ_FT	ISOLATE	34.791983	-118.187789
CP_1568	PUB	DEPRESS	9	SQ_FT	ISOLATE	34.790424	-118.1877
CP_1569	PUB	DEPRESS	34	SQ_FT	ISOLATE	34.790399	-118.187675
CP_1570	PUB	DEPRESS	416	SQ_FT	ISOLATE	34.791142	-118.187584
CP_1571	PUB	DEPRESS	1736	SQ_FT	ISOLATE	34.794322	-118.187541
CP_1572	PUB	DEPRESS	20	SQ_FT	ISOLATE	34.790393	-118.187461
CP_1573	PUB	DEPRESS	2	SQ_FT	ISOLATE	34.790408	-118.187454
CP-1574	PUB	DEPRESS	36	SQ_FT	ISOLATE	34.790374	-118.187441
CP_1575	PUB	DEPRESS	2	SQ_FT	ISOLATE	34.790379	-118.187433
CP_1576	PUB	DEPRESS	5	SQ_FT	ISOLATE	34.790377	-118.187424
CP_1577	PUB	DEPRESS	113	SQ_FT	ISOLATE	34.791186	-118.18734
CP_1578	PUB	DEPRESS	6	SQ_FT	ISOLATE	34.793439	-118.187256
CP_1579	PUB	DEPRESS	39	SQ_FT	ISOLATE	34.791167	-118.187218
CP_1580	PUB	DEPRESS	344	SQ_FT	ISOLATE	34.79348	-118.187141
CP_1581	PUB	DEPRESS	124	SQ_FT	ISOLATE	34.7913	-118.187117
CP-1582	PUB	DEPRESS	296	SQ_FT	ISOLATE	34.79115	-118.186932
CP_1583	PUB	DEPRESS	51	SQ_FT	ISOLATE	34.794379	-118.186873
CP_1584	PUB	DEPRESS	34	SQ_FT	ISOLATE	34.794409	-118.186788
CP_1585	PUB	DEPRESS	12	SQ_FT	ISOLATE	34.790333	-118.186706
CP_1586	PUB	DEPRESS	48	SQ_FT	ISOLATE	34.794401	-118.186687
CP_1587	PUB	DEPRESS	129	SQ_FT	ISOLATE	34.791504	-118.186154
CP_1588	PUB	DEPRESS	491	SQ_FT	ISOLATE	34.794379	-118.186033
CP_1589	PUB	DEPRESS	33	SQ_FT	ISOLATE	34.789683	-118.185999
CP-1590	PUB	DEPRESS	133	SQ_FT	ISOLATE	34.791456	-118.185869
CP-1591	PUB	DEPRESS	4885	SQ_FT	ISOLATE	34.788818	-118.185659
CP-1592	PUB	DEPRESS	49	SQ_FT	ISOLATE	34.789038	-118.185626
CP_1593	PUB	DEPRESS	42	SQ_FT	ISOLATE	34.78897	-118.185469
CP_1594	PUB	DEPRESS	96	SQ_FT	ISOLATE	34.789166	-118.185443
CP_1595	PUB	DEPRESS	479	SQ_FT	ISOLATE	34.789223	-118.185409
CP_1596	PUB	DEPRESS	13	SQ_FT	ISOLATE	34.789846	-118.185193
CP_1597	PUB	DEPRESS	15	SQ_FT	ISOLATE	34.789844	-118.185141
CP_1598	PUB	DEPRESS	13	SQ_FT	ISOLATE	34.791639	-118.185131
CP-1599	PUB	DEPRESS	91	SQ_FT	ISOLATE	34.789333	-118.185126
CP_1600	PUB	DEPRESS	20	SQ_FT	ISOLATE	34.791629	-118.185098
CP_1601	PUB	DEPRESS	5028	SQ_FT	ISOLATE	34.788774	-118.185035
CP_1602	PUB	DEPRESS	83	SQ_FT	ISOLATE	34.789988	-118.184997
CP_1603	PUB	DEPRESS	1052	SQ_FT	ISOLATE	34.789296	-118.18492
CP_1604	PUB	DEPRESS	57	SQ_FT	ISOLATE	34.790044	-118.184874
CP_1605	PUB	DEPRESS	292	SQ_FT	ISOLATE	34.789515	-118.184815
CP_1606	PUB	DEPRESS	0.1	SQ_FT	ISOLATE	34.789426	-118.184808
CP_1607	PUB	DEPRESS	3212	SQ_FT	ISOLATE	34.789011	-118.184806
CP-1608	PUB	DEPRESS	1783	SQ_FT	ISOLATE	34.790654	-118.184806
CP_1609	PUB	DEPRESS	82	SQ_FT	ISOLATE	34.789657	-118.184631
CP_1610	PUB	DEPRESS	10	SQ_FT	ISOLATE	34.789584	-118.184628
CP_1611	PUB	DEPRESS	727	SQ_FT	ISOLATE	34.788756	-118.184414
CP_1612	PUB	DEPRESS	154	SQ_FT	ISOLATE	34.790012	-118.184132
CP_1613	PUB	DEPRESS	373	SQ_FT	ISOLATE	34.789952	-118.184124

CP_1614	PUB	DEPRESS	40	SQ_FT	ISOLATE	34.789428	-118.184049
CP_1615	PUB	DEPRESS	93	SQ_FT	ISOLATE	34.788893	-118.18394
CP_-1616	PUB	DEPRESS	170	SQ_FT	ISOLATE	34.788803	-118.183776
CP_1617	PUB	DEPRESS	5	SQ_FT	ISOLATE	34.79002	-118.18365
CP_1618	PUB	DEPRESS	27	SQ_FT	ISOLATE	34.789235	-118.183645
CP-1619	PUB	DEPRESS	348	SQ_FT	ISOLATE	34.789292	-118.183361
CP_1620	PUB	DEPRESS	3270	SQ_FT	ISOLATE	34.788487	-118.185729
CP-1621	PUB	DEPRESS	174	SQ_FT	ISOLATE	34.788486	-118.184989
CP_1622	PUB	DEPRESS	322	SQ_FT	ISOLATE	34.787766	-118.184896
CP_1623	PUB	DEPRESS	36	SQ_FT	ISOLATE	34.788779	-118.184857
CP_1624	PUB	DEPRESS	165	SQ_FT	ISOLATE	34.788386	-118.18479
CP_1625	PUB	DEPRESS	4189	SQ_FT	ISOLATE	34.787654	-118.184789
CP_1626	PUB	DEPRESS	459	SQ_FT	ISOLATE	34.788059	-118.184263
CP_1627	PUB	DEPRESS	254	SQ_FT	ISOLATE	34.788156	-118.184206
CP_1628	PUB	DEPRESS	553	SQ_FT	ISOLATE	34.78692	-118.18394
CP_1629	PUB	DEPRESS	30	SQ_FT	ISOLATE	34.790107	-118.183302
CP_1630-001	PUB	DEPRESS	23	SQ_FT	ISOLATE	34.786479	-118.183159
CP_1632	PUB	DEPRESS	38	SQ_FT	ISOLATE	34.788562	-118.183092
CP_1633-001	PUB	DEPRESS	13	SQ_FT	ISOLATE	34.789626	-118.183068
CP_1633-002	PUB	DEPRESS	1	SQ_FT	ISOLATE	34.789626	-118.183068
CP_1636	PUB	DEPRESS	7	SQ_FT	ISOLATE	34.78959	-118.183036
CP_1638	PUB	DEPRESS	2	SQ_FT	ISOLATE	34.789894	-118.182989
CP_1639	PUB	DEPRESS	3	SQ_FT	ISOLATE	34.789803	-118.182948
CP_1640	PUB	DEPRESS	17	SQ_FT	ISOLATE	34.789528	-118.182935
CP_1641	PUB	DEPRESS	324	SQ_FT	ISOLATE	34.789462	-118.182796
CP-1642	PUB	DEPRESS	73	SQ_FT	ISOLATE	34.789282	-118.182777
CP_1643	PUB	DEPRESS	18	SQ_FT	ISOLATE	34.789322	-118.182766
CP_1644	PUB	DEPRESS	18	SQ_FT	ISOLATE	34.789355	-118.182747
CP_1645	PUB	DEPRESS	3	SQ_FT	ISOLATE	34.789357	-118.182718
CP_1646	PUB	DEPRESS	870	SQ_FT	ISOLATE	34.789402	-118.18264
CP_1647	PUB	DEPRESS	22	SQ_FT	ISOLATE	34.787315	-118.1826
CP_1648	PUB	DEPRESS	38	SQ_FT	ISOLATE	34.787254	-118.182569
CP_1649	PUB	DEPRESS	61	SQ_FT	ISOLATE	34.788559	-118.182481
CP_1650	PUB	DEPRESS	49	SQ_FT	ISOLATE	34.788417	-118.182452
CP_1651	PUB	DEPRESS	88	SQ_FT	ISOLATE	34.789382	-118.182426
CP_1652	PUB	DEPRESS	184	SQ_FT	ISOLATE	34.789427	-118.182393
CP_1653	PUB	DEPRESS	48	SQ_FT	ISOLATE	34.788582	-118.182392
CP_1654	PUB	DEPRESS	3	SQ_FT	ISOLATE	34.789349	-118.182328
CP_1655	PUB	DEPRESS	3	SQ_FT	ISOLATE	34.78935	-118.182318
CP_1656	PUB	DEPRESS	15	SQ_FT	ISOLATE	34.789377	-118.182293
CP_1657	PUB	DEPRESS	74	SQ_FT	ISOLATE	34.789326	-118.18225
CP_1658	PUB	DEPRESS	288	SQ_FT	ISOLATE	34.789279	-118.18216
CP_1659	PUB	DEPRESS	31	SQ_FT	ISOLATE	34.788124	-118.182064
CP_1660	PUB	DEPRESS	15	SQ_FT	ISOLATE	34.789211	-118.181999
CP_-1661	PUB	DEPRESS	347	SQ_FT	ISOLATE	34.78806	-118.181976
CP_1662	PUB	DEPRESS	1508	SQ_FT	ISOLATE	34.788685	-118.181958
CP_1664	PUB	DEPRESS	1264	SQ_FT	ISOLATE	34.789005	-118.181885

	BP HSR Mapped Streams with OHWM in Piute Ponds Watershed Study Area	Study Area in the Piute Ponds Watershed	Wetlands Study Area (Project Footprint + 250 ft Buffer)
N	\rightarrow Ephemeral Stream	Piute Ponds Watershed HUC-12	Direction of flow based on NHD flowlines
$\stackrel{1}{1}$, ${ }^{2}$	\rightarrow Ditch	Other HUC-12 Watersheds	

 SOURCE: ESR/USGS Topographic Basemap (2016); USGS 30m Hillshade (2015); Phase 4B
from CaHSRA (4/2016); Watershed Boundary Dataset/National Hydrography Dataset (2015).

| | Study Are in the
 PP HSR Mapped Streams with OHWM in | Siute Ponds Watershed | Wetlands Study Area
 (Project Footprint +250 fite Buffer) |
| :--- | :--- | :--- | :--- | :--- |
| Ponds Watershed Study Area | | | |

Los Angeles County 2013 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 12 Watershed Boundaries.

Los Angeles County 2011 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 12 Watershed Boundaries.

NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 12 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 12 Watershed Boundaries.

APPROVED JURISDICTIONAL DETERMINATION FORM U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): August 25, 2017

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: SPL-2010-00945-VCL-JD-8
C. PROJECT LOCATION AND BACKGROUND INFORMATION:

State: CA County/parish/borough: Los Angeles County City: N/A
Center coordinates of site (lat/long in degree decimal format): Lat. $34.686462^{\circ} \mathbf{N}$, Long. $118.135180^{\circ} \mathbf{W}$.
Universal Transverse Mercator: 396017 m E, 3838860 m N
Name of nearest waterbody: Amargosa Creek
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: N/A
Name of watershed or Hydrologic Unit Code (HUC): Amargosa Creek, California, 1809020614
Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

\boxtimes Office (Desk) Determination. Date: July 25, 2017
Field Determination. Date(s):

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

Waters subject to the ebb and flow of the tide.
Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.
Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There Are no "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
a. Indicate presence of waters of U.S. in review area (check all that apply): ${ }^{1}$
$\square \quad$ TNWs, including territorial seas
Wetlands adjacent to TNWs
Relatively permanent waters ${ }^{2}$ (RPWs) that flow directly or indirectly into TNWs
Non-RPWs that flow directly or indirectly into TNWs
Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
Impoundments of jurisdictional waters
Isolated (interstate or intrastate) waters, including isolated wetlands
b. Identify (estimate) size of waters of the U.S. in the review area:

Non-wetland waters: linear feet: width (ft) and/or acres.
Wetlands: acres.
c. Limits (boundaries) of jurisdiction based on: Not Applicable.

Elevation of established OHWM (if known):
2. Non-regulated waters/wetlands (check if applicable): ${ }^{3}$

Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain:
Within the project area of the Amargosa Creek HUC 10, there are a total of $\mathbf{1 , 8 4 3}$ aquatic features. These features include two forks of Amargosa Creek, specifically 6 segments of desert wash and 3 segments of ditches, as well as 29 unnamed ephemeral desert wash stream features, 21 additional ephemeral ditches, one seasonal wetland, 10 basins, 1,667 claypan features, and 106 ponded features. Amargosa Creek is the only named stream that crosses through the study area. Two forks of this creek cross

[^26]the study area: one fork crosses north of Lancaster near W Avenue F, and the other fork crosses south of Lancaster near Sierra Highway, before being routed into a system of ditches. Together these segments of Amargosa Creek span a total of 8,664 linear feet (1.64 miles) and cover approximately 1.91 acre. Other ephemeral desert wash streams span a total of approximately 17,837 linear feet ($\mathbf{3 . 3 8}$ miles) and cover approximately 4.02 acre; ephemeral ditches span a total of approximately 24,334 linear feet (4.61 mile), and cover approximately 3.63 acre; the seasonal wetland covers approximately 0.32 acre; and claypan features cover approximately 5.83 acres. Basins cover approximately 14.93 acres. Features of ponding cover approximately 1.40 acre. These features are quantified in this analysis and identified in the attached report to demonstrate that all surface aquatic resources in the study area were evaluated to determine their type, water source, and investigate for connections to waters of the U.S. Labeled maps and tables of features and dimensions are provided in the Aquatic Resources Delineation Report, which identifies each feature according to which HUC-10 watershed it occurs within.

Amargosa Creek segments, labeled AmargosaCreek_0411, AmargosaCreek_0437-001 through -004, AmargosaCreek_0438, and AmargosaCrk_Ditch_0430 through _0432, flow northeast toward Rosamond Dry Lake. These stream and ditch segments carry only ephemeral flow in the study area. The unnamed ephemeral desert washes, features Str_0397 through Str_0410, Str_0427 through _0428, Str_0433 through _0436, Str_0447 through_0451, Str_0453, Str_0455, and Str_0456 generally flow east-northeast within the study area. These aquatic features continue to flow northeast outside the study area toward Rosamond Dry Lake. The ephemeral ditches, Ditch_0416 through _0419, Ditch_0421 through 0422, Ditch_0424 through _0425, Ditch_0429, Ditch_0441 through _0444, Ditch_0452, Ditch_0454, and Ditch_0457 through Ditch_0460, are located along road shoulders and generally flow along roadsides until reaching culverts where the water flows under the road, or low points where the water flows across the road, rejoining natural features or sheet flow that convey the water farther northeast east toward Rosamond Dry Lake. Note that several stream and ditch features have multiple segments and are labeled as such in attached tables (e.g. Ditch_0421-001, Ditch_0421-002, etc.). Most of the ephemeral desert wash and ditch features dissipate and do not have defined channels that can be traced all the way down to the terminal point in the watershed. These features are similar to many other streams in the Antelope Valley Watershed that have welldefined channels where they originate in the mountains and foothills, but dissipate on the valley floor, where water movement during storms is primarily sheet flow.

Ephemeral and intermittent claypan features, features labeled "CP_" in the attached ORM sheet (CP_1630, CP_1631, CP_1634-001, CP_1634-002, CP_1635, CP_1637 (five segments), CP_1663, CP_1665 through CP_2774, CP_2777 through CP_2779, CP_2781, CP_2783, CP_2784, CP_2787 through CP_2792, CP2796 through CP_2797, CP_2799, CP_2801, CP_2805, CP_2809 through CP_2953, CP_2966 through CP_2971, CP_2975 through CP_2977, CP_2979 through CP_2982, CP_2986 through CP_2987, CP_2989 through CP_2993, CP_2995 through CP_2999, CP_3001 through CP_3021, CP_3023, CP_3025, CP_3026, CP_3028 through
 through CP_3085, CP_3087 through CP_3090, CP_3092, CP_3096 through CP_3181, CP_3185-001 and -002, CP_3191 through CP_3229, CP $\bar{P} 3231$ through CP_3232, CP $\quad 3234$ through CP_3290, CP_3292, CP $\quad 3295$ through CP_3300, CP_3302 through $\mathbf{C P}_{-}^{-3315}$, and CP3347-039 through CP_3353-002; multiple segments labeled as previously noted), are scattered throughout the study area due to the relatively flat topography. These low-lying depressional features are ephemeral or intermittent, and typically hold water for a few weeks annually.

There were 106 areas of ponding identified in the study area which are features labeled "PD_" in the attached ORM sheet (PD_2775 through_2776, PD_2780, PD_2782, PD_2785 through PD_2786, PD_2793 through PD_2795, PD_2798, PD_2800, PD_2802 through PD_2804, PD_2806 through PD_2808, PD_2948 through PD_2952, $\overline{\text { PD }}$-2954 through PD_2965, PD_2972 through PD_2974, PD_2978, PD_2983 through PD_2985, PD_2988, PD_2994, PD_3000, PD_3022, PD_3024, PD_3027, PD_3064, PD_3066, PD_3069, PD_3071, PD_3075, PD_3079, PD_3080, PD_3086, PD_3091, PD_3093 through PD_3095, PD_3182 through PD_3184, PD_3186, PD_3187, PD_3188, PD_3189, PD_3190, PD_3230, PD_3233, PD_3276 through PD_3289, PD_3291, PD_3293, PD_3294, PD_3301, and PD_3316 through PD_3332), and that hold water for at least fourteen days after storms. These intermittent features generally hold water for a few weeks similar to claypans.

Ten basins, Basin_0412 through _0415, Basin_0420, Basin_0423, Basin_0439 through _0440, and Basin_0445 through _0446, are isolated, constructed features that appear to be stormwater detention/retention basins. Some basins hold water for only a short duration, while others appear to be perennially wet based on review of aerial imagery.

The seasonal wetland, SW_0426, is in a low swale adjacent to an existing commercial development near Division Street, with a few inches of surface water periodically present, supporting hydrophytic vegetation. The feature appears to be supplemented by urban runoff from adjacent landscaping. It is not adjacent to a stream or ditch. Water leaves the site primarily through evaporation.

Nearly all aquatic features within the study area are ephemeral or intermittent (only a few may be potentially perennial) and all the aqautic features are not used for commerce. The hydrologic connection to the low point in the Antelope Valley watershed, Rogers, Rosamond, and Buckhorn Dry Lakes, is primarily through sheet flow during storms. A review of topographic maps and watershed boundary datasets indicates that waters from the study area drain toward Rosamond Dry Lake.

There are no Traditional Navigable Waters (TNWs) or Relatively Permanent Waters (RPWs) in the study area, and the ephemeral desert streams in the study area are not tributaries to RPWs or TNWs. A previous SWANCC watershed-level Approved JD for Antelope Valley (HUC10 \#s 1809020609 through 1809020624, excluding those portions of HUC12s 18090206151, 1901902061102, and 180902061103 that drain toward Lake Palmdale and its tributaries) determined that Rosamond, Buckhorn, and Rogers Dry Lakes, and their tributaries, (i.e. the Antelope Valley Watershed, excluding Lake Palmdale and tributaries to Lake Palmdale) are nonjurisdictional waters of the United States under SWANCC. This determination, SPL-2011-01084-SLP, dated June 7, 2013, found that
these Antelope Valley waters are not tributary to either a TNW or an (a)(3) water and Rosamond, Buckhorn, and Rogers Dry Lakes are not (a)(3) waters themselves. The Corps made this watershed conclusion because the Antelope Valley watershed is an isolated, intrastate watershed without any surface water related interstate commerce. This previous determination is still in effect, and is appended as a supporting document for this determination.

Additionally the Corps made a similar determination regarding Amargosa Creek near the study area (File No. 2013-00507-SLP). In this determination, the Corps evaluated two forks of Amargosa Creek near Palmdale, close to the southern segments evaluated in the current study area, and found that these waters, and ephemeral tributaries to the forks of Amargosa Creek, are tributaries to Rosamond Dry Lake. On the basis of the previous determination that Rosamond Dry Lake is not a TNW, RPW, or a 33 C.F.R. section 328.3 (a)(3)(i-iii) water, Amargosa Creek and tributaries were determined to be waters that are not currently regulated. The segments of Amargosa Creek in the current study area, and their tributaries, have similar characteristics to the features reviewed in 2013-00507-SLP.

The above is based upon the review of aerial photographs (Google Earth, accessed July 25, 2017) that also did not show surface water usage of the project drainages or the Rosamond Dry Lake terminus. Since the Rosamond Dry Lake is an intrastate isolated water without a surface water connection to commerce (see prior AJD file No. SPL-2011-01084-SLP), the subject 6 segments of desert wash and 3 segments of ditches of Amargosa Creek, 29 unnamed ephemeral desert wash stream features, 21 additional ephemeral ditches, one seasonal wetland, 10 basins, 1,667 claypan features, and 106 ponded features, as part of the same overall system, are also isolated and additionally have no nexus to commerce.

Based on the information above, the subject drainages, 6 segments of desert wash and 3 segments of ditches of Amargosa Creek, 29 unnamed ephemeral desert wash stream features, 21 additional ephemeral ditches, one seasonal wetland, 10 basins, 1,667 claypan features, and 106 ponded features, are NONJURISDICTIONAL waters of the United States, since the waters are NOT tributary to either a TNW or an (a)(3) water and are NOT (a)(3) waters themselves. The Corps makes such a conclusion since the waters are tribuatary to an isolated, intrastate dry lake.

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A. 1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A. 1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW:
Summarize rationale supporting determination:
2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent":

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody ${ }^{4}$ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B. 1 for the tributary, Section III.B. 2 for any onsite wetlands, and Section III.B. 3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
(i) General Area Conditions:
Watershed size: \quad Pick List
Drainage area: \quad Pick List
Average annual rainfall: \quad inches
Average annual snowfall: \quad inches
(ii) Physical Characteristics:
(a) Relationship with TNW:

Tributary flows directly into TNW.Tributary flows through Pick List tributaries before entering TNW.
Project waters are Pick List river miles from TNW.
Project waters are Pick List river miles from RPW.
Project waters are Pick List aerial (straight) miles from TNW.
Project waters are Pick List aerial (straight) miles from RPW.
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW^{5} :
Tributary stream order, if known:

[^27](b) General Tributary Characteristics (check all that apply): Tributary is:
\square Natural
Artificial (man-made). Explain:
Manipulated (man-altered). Explain:
Tributary properties with respect to top of bank (estimate):

Average width:	feet
Average depth:	feet
Average side slopes:	Pick List.

Primary tributary substrate composition (check all that apply):

\square Silts	\square Sands	\square Concrete
\square Cobbles	\square Gravel	\square Muck
\square Bedrock	\square Vegetation. Type/\% cover:	
\square Other. Explain:	.	

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain:
Presence of run/riffle/pool complexes. Explain:
Tributary geometry: Pick List
Tributary gradient (approximate average slope): \%
(c) Flow:

Tributary provides for: Pick List
Estimate average number of flow events in review area/year: Pick List
Describe flow regime:
Other information on duration and volume:
Surface flow is: Pick List. Characteristics:
Subsurface flow: Pick List. Explain findings:
\square Dye (or other) test performed:
Tributary has (check all that apply):
\square Bed and banks
$\square \mathrm{OHWM}^{6}$ (check all indicators that apply):

| \square clear, natural line impressed on the bank | \square the presence of litter and debris |
| :--- | :--- | :--- |
| \square changes in the character of soil | \square destruction of terrestrial vegetation |
| \square shelving | \square the presence of wrack line |

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
\square High Tide Line indicated by:
Mean High Water Mark indicated by:oil or scum line along shore objects \square survey to available datum;fine shell or debris deposits (foreshore)physical markings;physical markings/characteristicsvegetation lines/changes in vegetation types.
\square tidal gauges
other (list):

(iii) Chemical Characteristics:

Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain:
Identify specific pollutants, if known:

[^28](iv) Biological Characteristics. Channel supports (check all that apply):
\square Riparian corridor. Characteristics (type, average width):
\square Wetland fringe. Characteristics:
Habitat for:Federally Listed species. Explain findings:Fish/spawn areas. Explain findings:
\square Other environmentally-sensitive species. Explain findings:Aquatic/wildlife diversity. Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics:

Properties:
Wetland size: acres
Wetland type. Explain:
Wetland quality. Explain:
Project wetlands cross or serve as state boundaries. Explain:
(b) General Flow Relationship with Non-TNW:

Flow is: Pick List. Explain:
Surface flow is: Pick List Characteristics:

Subsurface flow: Pick List. Explain findings:Dye (or other) test performed:
(c) Wetland Adjacency Determination with Non-TNW:Directly abuttingNot directly abutting
\square Discrete wetland hydrologic connection. Explain:
\square Ecological connection. Explain:
Separated by berm/barrier. Explain:
(d) Proximity (Relationship) to TNW

Project wetlands are Pick List river miles from TNW.
Project waters are Pick List aerial (straight) miles from TNW.
Flow is from: Pick List.
Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain:
Identify specific pollutants, if known:
(iii) Biological Characteristics. Wetland supports (check all that apply):
\square Riparian buffer. Characteristics (type, average width):
\square Vegetation type/percent cover. Explain:
\square Habitat for:
\square Federally Listed species. Explain findings:
\square Fish/spawn areas. Explain findings:Other environmentally-sensitive species. Explain findings:Aquatic/wildlife diversity. Explain findings:
3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in the cumulative analysis: Pick List
Approximately () acres in total are being considered in the cumulative analysis.

For each wetland, specify the following:
Directly abuts? (Y/N) Size (in acres) \quad Directly abuts? (Y/N) Size (in acres)

Summarize overall biological, chemical and physical functions being performed:

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:
3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:TNWs: linear feet width (ft), Or, acres.
Wetlands adjacent to TNWs: acres.
2. RPWs that flow directly or indirectly into TNWs.
\square Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
\square Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):
\square Tributary waters: linear feet width (ft).
\square Other non-wetland waters: acres. Identify type(s) of waters: .
3. Non-RPWs ${ }^{8}$ that flow directly or indirectly into TNWs.
\square Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):
\square Tributary waters: linear feet width (ft).
\square Other non-wetland waters: acres.
Identify type(s) of waters: .
4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
\square Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:
\square Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

Provide acreage estimates for jurisdictional wetlands in the review area:
acres.
5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
\square Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.
6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.
7. Impoundments of jurisdictional waters. ${ }^{9}$

As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
Demonstrate that impoundment was created from "waters of the U.S.," or
\square Demonstrate that water meets the criteria for one of the categories presented above (1-6), orDemonstrate that water is isolated with a nexus to commerce (see E below).

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY): ${ }^{10}$

\square which are or could be used by interstate or foreign travelers for recreational or other purposes.
\square from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
\square which are or could be used for industrial purposes by industries in interstate commerce.
\square Interstate isolated waters. Explain:
\square Other factors. Explain:
Identify water body and summarize rationale supporting determination:

[^29]Provide estimates for jurisdictional waters in the review area (check all that apply):
\square Tributary waters: linear feet width (ft).Other non-wetland waters: acres. Identify type(s) of waters:Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

\square If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
\boxtimes Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
\boxtimes Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR).Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain:
Other: (explain, if not covered above):
Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
ฟ Non-wetland waters (i.e., rivers, streams): approximately 22,389 linear feet $\mathbf{2}$ to 20 feet in width (ft).
\square Lakes/ponds: acres.
Other non-wetland waters: 27.20 acres. List type of aquatic resource: Basins 14.93 acres, Claypans 5.83 acres, Ditches 3.63 acres and Ponding in Developed Areas 1.40 acres.
W Wetlands: seasonal 0.32 acres.
Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply):

\square	Non-wetland waters (i.e., rivers, streams): linear feet, width (ft).
\square	Lakes/ponds: acres.
\square	Other non-wetland waters: acres. List type of aquatic resource:
\square	Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
\boxtimes Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Features are depicted on Map Sheets 140-171 in Appendix E of the submitted delineation. .
\square Data sheets prepared/submitted by or on behalf of the applicant/consultant.
Office concurs with data sheets/delineation report.
Office does not concur with data sheets/delineation report.

Data sheets prepared by the Corps:
\square Corps navigable waters' study:
U.S. Geological Survey Hydrologic Atlas: see attached watershed figures for HUC boundaries and flow lines. \boxtimes USGS NHD data. \boxtimes USGS 8 and 12 digit HUC maps.
\boxtimes U.S. Geological Survey map(s). Cite scale \& quad name: Lancaster West 7.5 minute quadrangle.
USDA Natural Resources Conservation Service Soil Survey. Citation:
\square National wetlands inventory map(s). Cite name:
State/Local wetland inventory map(s):
\square FEMA/FIRM maps:
\square 100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929)
\boxtimes Photographs: \boxtimes Aerial (Name \& Date): NAIP Imagery 2005 and 2014 at 1-m resolution; LA County Imagery 2011 and 2013 at a 1 -foot resolution.
\qquad Other (Name \& Date): .
\boxtimes Previous determination(s). File no. and date of response letter: SPL-2011-01084-SLP, June 7, 2013; SPL-2013-00507-SLP, May 5, 2014.
\square Applicable/supporting case law:
\square Applicable/supporting scientific literature:
Other information (please specify):Aquatic Resources Delineation Report prepared by the applicant/consultant references additional materials; also Appendix E contains map sheets; Appendix F contains dimensions. HUC watershed maps of review areas with NHD Data provided by the applicant/consultant; general use of NAIP Imagery 2009, 2010, and 2012 at 1-m resolution; LA County

Imagery 2015 at 1 -foot resolution; 2015 Site specific IR Imagery, 3-inch color pixel; Bing Aerial Imagery - multiple years (scale dependent); ESRI World Imagery (streaming service) multiple years (scale dependent); Google Earth Historic Photos (used for reference and includes portions from above listed sources).

B. ADDITIONAL COMMENTS TO SUPPORT JD:

Waters_Name	Cowardin	_Code HG	HGM_Code	Amount	Units Latitude Longitude
Str_0397a	R6	RIVERINE	E 0.00	ACRE	34.78655-118.1843669
Str_0397c	R6	RIVERINE	- 0.11	ACRE	34.78617-118.1820365
Str_0398b	R6	RIVERINE	E 0.02	ACRE	34.78617-118.1813046
Str_0399	R6	RIVERINE	E 0.220	ACRE	34.78502-118.181059
Str_0400	R6	RIVERINE	- 0.00	ACRE	34.78617-118.1797037
Str_0401	R6	RIVERINE	E 0.01	ACRE	34.78505-118.1794268
Str_0402	R6	RIVERINE	E 0.01	ACRE	34.78544-118.1791358
Str_0403	R6	RIVERINE	- 0.11	ACRE	34.78402-118.1792059
Str_0404	R6	RIVERINE	- 0.05	ACRE	34.78284-118.1812322
Str_0405	R6	RIVERINE	E 0.03	ACRE	34.78247-118.1811284
Str_0406	R6	RIVERINE	E 0.01	ACRE	34.78233-118.1810439
Str_0407	R6	RIVERINE	E 0.06	ACRE	34.77539-118.1752071
Str_0408	R6	RIVERINE	E 0.15	ACRE	34.77241-118.1735731
Str_0409-001	R6	RIVERINE	E 0.010	ACRE	34.76984-118.1714605
Str_0409-002	R6	RIVERINE	E 0.00	ACRE	34.77178-118.1735966
Str_0410	R6	RIVERINE	E 0.09	ACRE	$34.7491-118.1520713$
AmargosaCreek_	411	R6 RI	RIVERINE	0.14	ACRE 34.74635-118.151514
Basin_0412	PUB	RIVERINE	- 0.29	ACRE	34.73304-118.140983
Basin_0413	PUB R	RIVERINE	E 1.29	ACRE	34.73286-118.136711
Basin_0414	PUB	RIVERINE	- 1.30	ACRE	34.73287-118.135845
Basin_0415	PUB	RIVERINE	- 0.82	ACRE	34.72268-118.143427
Ditch_0416-001	R6	RIVERINE	E 0.005	ACRE	34.71352-118.1389889
Ditch_0416-002	R6	RIVERINE	E 0.02	ACRE	34.7138 -118.1401715
Ditch_0417	R6	RIVERINE	E 0.06	ACRE	34.71626-118.1396852
Ditch_0418	R6 R	RIVERINE	- 0.01	ACRE	$34.7139-118.1395531$
Ditch_0419	R6	RIVERINE	- 0.02	ACRE	34.71259-118.1390817
Basin_0420	PUB R	RIVERINE	- 3.93	ACRE	34.71754-118.138295
Ditch_0421-001	R6	RIVERINE	- 0.04	ACRE	34.71232-118.1382373
Ditch_0421-002	R6 RI	RIVERINE	- 0.0007	ACRE	34.71355-118.1385169
Ditch_0422	R6	RIVERINE	- 0.08	ACRE	34.71579-118.1373747
Basin_0423	PUB	RIVERINE	E 3.35	ACRE	34.69627-118.132236
Ditch_0424	R6	RIVERINE	E 0.08	ACRE	34.69207-118.1351291
Ditch_0425	R6	RIVERINE	- 0.24	ACRE	34.68227-118.1334178
SW_0426	PEM	RIVERINE	- 0.32	ACRE	34.67435-118.1279328
Str_0427	R6	RIVERINE	- 0.02	ACRE	34.64457-118.1357612
Str_0428	R6	RIVERINE	- 0.04	ACRE	34.64135-118.1282437
Ditch_0429	R6	RIVERINE	E 0.005	ACRE	$34.6419-118.1279017$
AmargosaCrk_Di	ch_0430	R6 RI	RIVERINE	0.08	ACRE 34.64513-118.1273144
AmargosaCrk_Di	ch_0431	R6 RI	RIVERINE	0.01	ACRE 34.64613-118.1273593
AmargosaCrk_Di	ch_0432	R6 RI	RIVERINE	0.97	ACRE 34.63986-118.1271351
Str_0433	R6	RIVERINE	R 0.3	ACRE	34.63691-118.137527
Str_0434	R6	RIVERINE	E 0.02	ACRE	34.63299-118.1283876
Str_0435	R6	RIVERINE	- 0.04	ACRE	$34.6343-118.12022$
Str_0436	R6	RIVERINE	- 0.02	ACRE	$34.6279-118.1343827$
AmargosaCreek	437-001	R6 RI	RIVERINE	0.002	ACRE 34.62719-118.1318041
AmargosaCreek	437-002	R6 RI	RIVERINE	0.09	ACRE 34.62709-118.1324838
AmargosaCreek	437-003	R6 RI	RIVERINE	0.01	ACRE 34.6275-118.1323855
AmargosaCreek	437-004	R6 RI	RIVERINE	0.02	ACRE 34.63072-118.1301677
AmargosaCreek_	438	R6 RI	RIVERINE	0.59	ACRE 34.63335-118.1289324
Basin_0439	PEM R	RIVERINE	- 2.01	ACRE	34.61722-118.127358
Basin_0440	PEM	RIVERINE	E 1.73	ACRE	34.61745-118.12582
Ditch_0441	R6 RIV	RIVERINE	- 0.68	ACRE	34.61392-118.123645
Ditch_0442	R6	RIVERINE	- 0.09	ACRE	34.61211-118.122061
Ditch_0443	R6 RI	RIVERINE	E 0.002	ACRE	34.60932-118.121441
Ditch_0444	R6	RIVERINE	E 0.1	ACRE	34.60044-118.124843
Basin_0445	PUB	RIVERINE	- 0.04	ACRE	34.60717-118.12367
Basin_0446	PEM	RIVERINE	E 0.17	ACRE	34.6016-118.116003
Str_0447 R6	RIVERINE		0.12 ACRE	34.6015	-118.113538
Str_0448 R6	RIVERINE		0.51 ACRE	34.6014	-118.112426

Str_0449 R6	RIVERINE	E 0.03	ACRE	34.60233-118.112154
Str_0450 R6	RIVERINE	E 0.06	ACRE	34.60244-118.111885
Str_0451 R6	RIVERINE	E 1.1	ACRE	34.59603-118.121769
Ditch_0452	R6 R	RIVERINE	0.35	ACRE 34.59477-118.119996
Str_0453 R6	RIVERINE	E 0.28	ACRE	34.59724-118.119794
Ditch_0454	R6 R	RIVERINE	0.14	ACRE 34.59203-118.119585
Str_0455 R6	RIVERINE	E 0.31	ACRE	34.59409-118.119431
Str_0456 R6	RIVERINE	E 0.29	ACRE	34.59599-118.119377
Ditch_0457	R6 R	RIVERINE	1.18	ACRE 34.58465-118.118415
Ditch_0458	R6 R	RIVERINE	0.5	ACRE 34.57638-118.117216
Ditch_0459	R6 R	RIVERINE	0.02	ACRE 34.57205-118.129479
Ditch_0460	R6 RIV	RIVERINE	0.01	ACRE 34.57243-118.128693
CP_1630-002	PUB D	DEPRESS	132	SQ_FT 34.78648-118.183159
CP_1631	PUB D	DEPRESS	6	SQ_FT 34.78486-118.183099
CP_1634-001	PUB D	DEPRESS	33	SQ_FT 34.78488-118.183071
CP_1634-002	PUB D	DEPRESS	21	SQ_FT 34.78488-118.183071
CP_1635	PUB D	DEPRESS	6	SQ_FT 34.7849 -118.183053
CP-1637-001	PUB D	DEPRESS	96	SQ_FT 34.78502-118.183007
CP-1637-002	PUB D	DEPRESS	1	SQ_FT 34.78502-118.183007
CP_1637-003	PUB D	DEPRESS	330	SQ_FT 34.78502-118.183007
CP_1637-004	PUB D	DEPRESS	8	SQ_FT 34.78502-118.183007
CP_1637-005	PUB D	DEPRESS	29	SQ_FT 34.78502-118.183007
CP_1663	PUB D	DEPRESS	22	SQ_FT 34.78513-118.181906
CP_1665	PUB D	DEPRESS	44	SQ_FT $34.7842-118.181379$
CP_1666 PUB	DEPRESS	S3	SQ_FT	34.78427-118.181352
CP_1667 PUB	DEPRESS	61	SQ_FT	34.7842-118.18134
CP_1668 PUB	DEPRESS	182	SQ_FT	34.78429-118.180589
CP_1669 PUB	DEPRESS	68	SQ_FT	34.78487-118.180594
CP_1670 PUB	DEPRESS	76	SQ_FT	34.78363-118.179799
CP_1671 PUB	DEPRESS	5	SQ_FT	$34.7837-118.179739$
CP_1672 PUB	DEPRESS	6	SQ_FT	34.78368-118.179634
CP_1673 PUB	DEPRESS	78	SQ_FT	34.78345-118.179602
CP_1674 PUB	DEPRESS	35	SQ_FT	34.78345-118.17955
CP_1675 PUB	DEPRESS	236.0	SQ_FT	34.78361-118.179549
CP_1676-001	PUB D	DEPRESS	0.2	SQ_FT 34.78383-118.179548
CP_1676-002	PUB D	DEPRESS	33	SQ_FT 34.78383-118.179548
CP_1677 PUB	DEPRESS	- 82	SQ_FT	34.78417-118.179216
CP_1678 PUB	DEPRESS	- 38	SQ_FT	34.78359-118.179053
CP_1679 PUB	DEPRESS	18	SQ_FT	34.78401-118.178082
CP_1680-001	PUB D	DEPRESS	2	SQ_FT $34.784-118.178017$
CP_1680-002	PUB D	DEPRESS	39	SQ_FT $34.784-118.178017$
CP_1680-003	PUB D	DEPRESS	13	SQ_FT $34.784-118.178017$
CP_1681-001	PUB D	DEPRESS	9.0	SQ_FT 34.78243-118.181417
CP_1681-002	PUB D	DEPRESS	0.5	SQ_FT 34.78243-118.181417
CP_1681-003	PUB D	DEPRESS	0.2	SQ_FT 34.78243-118.181417
CP_1681-004	PUB D	DEPRESS	0.1	SQ_FT 34.78243-118.181417
CP_1681-005	PUB D	DEPRESS	67	SQ_FT 34.78243-118.181417
CP_1682-001	PUB D	DEPRESS	2	SQ_FT 34.78236-118.181315
CP_1682-002	PUB D	DEPRESS	9	SQ_FT 34.78236-118.181315
CP_1682-003	PUB D	DEPRESS	65.0	SQ_FT 34.78236-118.181315
CP_1683-001	PUB D	DEPRESS	0.1	SQ_FT 34.78232-118.18105
CP_1683-002	PUB D	DEPRESS	128	SQ_FT 34.78232-118.18105
CP_1683-003	PUB D	DEPRESS		SQ_FT 34.78232-118.18105
CP_1684 PUB	DEPRESS	S 20	SQ_FT	34.78185-118.180758
CP_1685 PUB	DEPRESS	- 379.00	SQ_FT	34.78215-118.180658
CP_1686 PUB	DEPRESS	- 0.03	ACRE	34.78164-118.180635
CP_1687 PUB	DEPRESS	6	SQ_FT	34.78164-118.180603
CP_1688 PUB	DEPRESS	62	SQ_FT	34.78226-118.180387
CP_1689 PUB	DEPRESS	- 26	SQ_FT	34.78252-118.180309
CP_1690 PUB	DEPRESS	4	SQ_FT	34.78297-118.180288
CP_1691 PUB	DEPRESS	- 9	SQ_FT	$34.783-118.180279$
CP_1692 PUB	DEPRESS	3	SQ_FT	34.78296-118.180271
CP_1693 PUB	DEPRESS	26	SQ_FT	34.78251-118.180236
CP_1694 PUB	DEPRESS	163	SQ_FT	34.78183-118.180224
CP_1695 PUB	DEPRESS	11	SQ_FT	34.78303-118.180157
CP_1696 PUB	DEPRESS	5 500	SQ_FT	34.78301-118.180155

CP_1697 PUB	DEPRESS	0.25	ACRE	34.781	-118.18009
CP_1698 PUB	DEPRESS	104	SQ_FT	34.7827	-118.18009
CP_1699 PUB	DEPRESS	19.00	SQ_FT	34.78312	-118.18008
CP_1700 PUB	DEPRESS	0.02	ACRE	34.78256	-118.18006
CP_1701 PUB	DEPRESS	6	SQ_FT	34.78229	-118.17994
CP_1702 PUB	DEPRESS	48.00	SQ_FT	34.78202	-118.17990
CP_1703 PUB	DEPRESS	0.02	ACRE	34.7827	-118.17987
CP_1704 PUB	DEPRESS	0.03	ACRE	34.78222	-118.17985
CP_1705 PUB	DEPRESS	37	SQ_FT	34.78288	-118.17980
CP_1706 PUB	DEPRESS	19	SQ_FT	34.7828	-118.17980
CP_1707 PUB	DEPRESS	15	SQ_FT	34.7828	-118.17979
CP_1708 PUB	DEPRESS	9	SQ_FT	34.7817	-118.17976
CP_1709 PUB	DEPRESS	22	SQ_FT	34.7828	-118.17975
CP_1710 PUB	DEPRESS	27	SQ_FT	34.7828	-118.17973
CP_1711 PUB	DEPRESS	9.00	SQ_FT	34.7827	-118.17973
CP_1712 PUB	DEPRESS	0.03	ACRE	34.78302	-118.17972
CP_1713 PUB	DEPRESS	308.00	SQ_FT	34.78192	-118.17971
CP_1714 PUB	DEPRESS	0.01	ACRE	34.78266	-118.17970
CP_1715 PUB	DEPRESS	40	SQ_FT	34.7828	-118.17968
CP_1716 PUB	DEPRESS	14	SQ_FT	34.7828	-118.17968
CP_1717 PUB	DEPRESS	466	SQ_FT	34.7801	-118.17966
CP_1718 PUB	DEPRESS	37	SQ_FT	34.78016	-118.17930
CP_1719 PUB	DEPRESS	124	SQ_FT	34.7800	-118.17920
CP_1720 PUB	DEPRESS	10	SQ_FT	34.7793	-118.17913
CP_1721 PUB	DEPRESS	232.00	SQ_FT	34.7792	-118.17895
CP_1722 PUB	DEPRESS	0.06	ACRE	34.7803	-118.17893
CP_1723 PUB	DEPRESS	0.04	ACRE	34.77963	-118.17886
CP_1724 PUB	DEPRESS	0.06	ACRE	34.7804	-118.17866
CP_1725 PUB	DEPRESS	0.07	ACRE	34.7791	-118.17864
CP_1726 PUB	DEPRESS	0.0	ACRE	34.7788	-118.17857
CP_1727 PUB	DEPRESS	0.1	SQ_FT	34.77892	-118.17848
CP_1728 PUB	DEPRESS	26	SQ_FT	34.78013	-118.17811
CP_1729 PUB	DEPRESS	88	SQ_FT	34.7774	-118.17788
CP_1730 PUB	DEPRESS	93	SQ_FT	34.7775	-118.17780
CP_1731 PUB	DEPRESS	277.00	SQ_FT	34.7774	-118.17763
CP_1732 PUB	DEPRESS	0.04	ACRE	34.77979	-118.17757
CP_1733 PUB	DEPRESS	49	SQ_FT	34.7772	-118.17745
CP_1734-001	PUB		4.00	SQ_FT	34.7775
CP_1734-002	PUB		0.02	ACRE	34.7775 -1
CP_1735 PUB	DEPRESS	0.02	ACRE	34.7783	-118.17741
CP_1736 PUB	DEPRESS	116	SQ_FT	34.77976	-118.17741
CP_1737 PUB	DEPRESS	24.00	SQ_FT	34.77719	-118.17740
CP_1738 PUB	DEPRESS	0.02	ACRE	34.7788	-118.17740
CP_1739 PUB	DEPRESS	0.01	ACRE	34.78008	-118.17723
CP_1740 PUB	DEPRESS	11	SQ_FT	34.77679	-118.17722
CP_1741 PUB	DEPRESS	15.00	SQ_FT	34.7807	-118.17722
CP_1742 PUB	DEPRESS	0.02	ACRE	34.77752	-118.17716
CP_1743 PUB	DEPRESS	25	SQ_FT	34.77746	-118.17706
CP_1744 PUB	DEPRESS	9	SQ_FT	34.77746	-118.17699
CP_1745 PUB	DEPRESS	29	SQ_FT	34.7775	-118.17693
CP_1746 PUB	DEPRESS	60	SQ_FT	34.77748	-118.17691
CP_1747 PUB	DEPRESS	7.00	SQ_FT	34.7775	-118.1769
CP_1748 PUB	DEPRESS	0.04	ACRE	34.77749	-118.17660
CP_1749 PUB	DEPRESS	106.00	SQ_FT	34.7808	-118.17653
CP_1750 PUB	DEPRESS	0.03	ACRE	34.78003	-118.17651
CP_1751 PUB	DEPRESS	208.00	SQ_FT	34.77893	-118.17649
CP_1752 PUB	DEPRESS	0.06	ACRE	34.7805	-118.17648
CP_1753 PUB	DEPRESS	21	SQ_FT	34.7810	-118.17645
CP_1754 PUB	DEPRESS	15	SQ_FT	34.78102	-118.17644
CP_1755 PUB	DEPRESS	21	SQ_FT	34.7788	-118.17641
CP_1756 PUB	DEPRESS	33	SQ_FT	34.7809	-118.17639
CP_1757 PUB	DEPRESS	68	SQ_FT	34.78199	-118.17636
CP_1758 PUB	DEPRESS	36	SQ_FT	34.78202	-118.17635
CP_1759 PUB	DEPRESS	28	SQ_FT	34.7789	-118.17635
CP_1760 PUB	DEPRESS	172.00	SQ_FT	34.7773	-118.17632
CP_1761 PUB	DEPRESS	0.06	ACRE	34.7775	-118.17631

CP_1762 PUB	DEPRESS	- 0.02	ACRE	34.77789-118.17627
CP_1763 PUB	DEPRESS	S 13.00	SQ_FT	34.77733-118.17626
CP_1764 PUB	DEPRESS	- 0.11	ACRE	$34.7772-118.176182$
CP_1765 PUB	DEPRESS	192	SQ_FT	34.77592-118.176104
CP_1766 PUB	DEPRESS	8.00	SQ_FT	34.78207-118.176022
CP_1767 PUB	DEPRESS	- 0.58	ACRE	34.78124-118.175977
CP_1768 PUB	DEPRESS	434	SQ_FT	34.78053-118.175903
CP_1769 PUB	DEPRESS	- 123	SQ_FT	34.77708-118.17563
CP_1770 PUB	DEPRESS	- 9	SQ_FT	34.77718-118.175629
CP_1771 PUB	DEPRESS	74	SQ_FT	34.77671-118.175624
CP_1772-001	PUB D	DEPRESS	5	SQ_FT 34.77632-118.175595
CP_1772-002	PUB D	DEPRESS	2	SQ_FT 34.77632-118.175595
CP_1772-003	PUB D	DEPRESS	5	SQ_FT 34.77632-118.175595
CP_1772-004	PUB D	DEPRESS	17.0	SQ_FT 34.77632-118.175595
CP_1772-005	PUB D	DEPRESS	0.2	SQ_FT 34.77632-118.175595
CP_1772-006	PUB D	DEPRESS	6	SQ_FT 34.77632-118.175595
CP_1772-007	PUB D	DEPRESS	12	SQ_FT 34.77632-118.175595
CP_1772-008	PUB D	DEPRESS	40	SQ_FT 34.77632-118.175595
CP_1773 PUB	DEPRESS	- 8	SQ_FT	34.77665-118.175572
CP_1774 PUB	DEPRESS	4	SQ_FT	34.77672-118.175564
CP_1775-001	PUB D	DEPRESS	120	SQ_FT 34.77708-118.175559
CP_1775-002	PUB D	DEPRESS	9	SQ_FT 34.77708-118.175559
CP_1776 PUB	DEPRESS	- 46	SQ_FT	34.77713-118.175552
CP_1777 PUB	DEPRESS	22	SQ_FT	34.77656-118.175521
CP_1778 PUB	DEPRESS	- 9	SQ_FT	$34.7766-118.175496$
CP_1779 PUB	DEPRESS	3	SQ_FT	34.77657-118.175487
CP_1780 PUB	DEPRESS	- 340.00	SQ_FT	$34.777-118.175464$
CP_1781 PUB	DEPRESS	- 0.02	ACRE	34.77951-118.175454
CP_1782 PUB	DEPRESS	0.01	ACRE	34.77655-118.175415
CP_1783 PUB	DEPRESS	-11	SQ_FT	34.77573-118.175403
CP_1784 PUB	DEPRESS	331	SQ_FT	34.77677-118.1754
CP_1785 PUB	DEPRESS	- 23	SQ_FT	34.77672-118.175384
CP_1786 PUB	DEPRESS	7	SQ_FT	34.77573-118.175382
CP_1787 PUB	DEPRESS	10	SQ_FT	34.77672-118.175358
CP_1788 PUB	DEPRESS	56	SQ_FT	34.77647-118.175352
CP_1789 PUB	DEPRESS	51	SQ_FT	34.77904-118.175303
CP_1790 PUB	DEPRESS	50	SQ_FT	34.77876-118.17525
CP_1791 PUB	DEPRESS	65	SQ_FT	$34.7764-118.175248$
CP_1792 PUB	DEPRESS	208	SQ_FT	34.77659-118.175197
CP_1793 PUB	DEPRESS	S 36	SQ_FT	34.77712-118.175166
CP_1794 PUB	DEPRESS	- 15	SQ_FT	34.77702-118.175157
CP_1795 PUB	DEPRESS	15	SQ_FT	34.77701-118.175112
CP_-1796 PUB	DEPRESS	- 174.00	SQ_FT	34.77663-118.175101
CP_1797 PUB	DEPRESS	- 0.04	ACRE	34.77677-118.175098
CP_1798 PUB	DEPRESS	0.02	ACRE	34.77711-118.174887
CP_1799 PUB	DEPRESS	24	SQ_FT	34.77533-118.174875
CP_1800 PUB	DEPRESS	5	SQ_FT	34.77679-118.174853
CP_1801 PUB	DEPRESS	18	SQ_FT	34.77701-118.174837
CP_1802 PUB	DEPRESS	19	SQ_FT	34.77676-118.174804
CP_1803 PUB	DEPRESS	4	SQ_FT	34.77661-118.174674
CP_1804 PUB	DEPRESS	S 91	SQ_FT	34.77663-118.174657
CP_1805 PUB	DEPRESS	S 94.00	SQ_FT	$34.781-118.174578$
CP_1806 PUB	DEPRESS	- 0.02	ACRE	34.77679-118.174517
CP_1807 PUB	DEPRESS	217	SQ_FT	34.77662-118.174469
CP_1808 PUB	DEPRESS	419	SQ_FT	$34.7787-118.174403$
CP_1809 PUB	DEPRESS	105	SQ_FT	34.77645-118.174382
CP_1810 PUB	DEPRESS	146	SQ_FT	34.77876-118.174289
CP_1811 PUB	DEPRESS	- 156.00	SQ_FT	34.77668-118.174276
CP_1812 PUB	DEPRESS	- 0.06	ACRE	34.77735-118.174174
CP_1813 PUB	DEPRESS	375	SQ_FT	34.77666-118.174164
CP_1814 PUB	DEPRESS	- 9	SQ_FT	34.77568-118.174112
CP_1815 PUB	DEPRESS	12	SQ_FT	34.77746-118.174069
CP_1816 PUB	DEPRESS	- 8	SQ_FT	34.77657-118.174061
CP_1817 PUB	DEPRESS	- 19	SQ_FT	$34.7775-118.173351$
CP_1818 PUB	DEPRESS	395	SQ_FT	34.77741-118.173318
CP_1819 PUB	DEPRESS	- 14	SQ_FT	34.77745-118.173285

CP_1820-001	PUB D	DEPRESS	2	SQ_FT 34.77739-118.173271
CP_1820-002	PUB D	DEPRESS	17	SQ_FT 34.77739-118.173271
CP_1821 PUB	DEPRESS	S 17	SQ_FT	34.77739-118.173242
CP_1822 PUB	DEPRESS	S 11	SQ_FT	34.77742-118.173018
CP_1823 PUB	DEPRESS	S 14	SQ_FT	34.77729-118.172946
CP_1824 PUB	DEPRESS	S	SQ_FT	34.77731-118.172902
CP_1825 PUB	DEPRESS	S 7	SQ_FT	34.77732-118.172811
CP_1826 PUB	DEPRESS	S 35	SQ_FT	34.77669-118.172721
CP_1827 PUB	DEPRESS	S 131	SQ_FT	34.77669-118.17254
CP_1828 PUB	DEPRESS	S 262	SQ_FT	34.77642-118.17229
CP_1829 PUB	DEPRESS	S 45	SQ_FT	34.77629-118.172198
CP_1830 PUB	DEPRESS	S	SQ_FT	34.77638-118.172073
CP_1831 PUB	DEPRESS	S 204.0	SQ_FT	34.77562-118.171583
CP_1832-001	PUB D	DEPRESS	0.4	SQ_FT 34.77507-118.174942
CP_1832-002	PUB D	DEPRESS	5	SQ_FT 34.77507-118.174942
CP_1832-003	PUB D	DEPRESS	9	SQ_FT 34.77507-118.174942
CP_1833-001	PUB D	DEPRESS	1	SQ_FT 34.77511-118.174929
CP_1833-002	PUB D	DEPRESS	2	SQ_FT 34.77511-118.174929
CP_1833-003	PUB D	DEPRESS	28	SQ_FT 34.77511-118.174929
CP_1834-001	PUB D	DEPRESS	2	SQ_FT 34.77502-118.174908
CP_1834-002	PUB D	DEPRESS	16	SQ_FT 34.77502-118.174908
CP_1835 PUB	DEPRESS	S 3	SQ_FT	34.775 -118.17482
CP_1836-001	PUB D	DEPRESS	12	SQ_FT 34.7747 -118.174618
CP_1836-002	PUB D	DEPRESS	9.0	SQ_FT 34.7747 -118.174618
CP_1837-001	PUB D	DEPRESS	0.3	SQ_FT 34.77445-118.174393
CP_1837-002	PUB D	DEPRESS	5	SQ_FT 34.77445-118.174393
CP_1837-003	PUB D	DEPRESS	1	SQ_FT 34.77445-118.174393
CP_1837-004	PUB D	DEPRESS	11	SQ_FT 34.77445-118.174393
CP_1838 PUB	DEPRESS	S 53	SQ_FT	34.77451-118.174345
CP_1839 PUB	DEPRESS	$\begin{array}{ll}\text { S } & 7\end{array}$	SQ_FT	$34.7745-118.17429$
CP_1840 PUB	DEPRESS	S 33	SQ_FT	34.77444-118.174233
CP_1841 PUB	DEPRESS	S 77	SQ_FT	34.77447-118.17423
CP_1842 PUB	DEPRESS	S 3	SQ_FT	34.77435-118.174116
CP_1843 PUB	DEPRESS	5	SQ_FT	34.77438-118.174089
CP_1844 PUB	DEPRESS	S 92	SQ_FT	34.77431-118.17401
CP_1845 PUB	DEPRESS	S 3	SQ_FT	34.77429-118.173836
CP_1846 PUB	DEPRESS	S 9	SQ_FT	$34.7743-118.173833$
CP_1847 PUB	DEPRESS	S 14	SQ_FT	34.77367-118.173612
CP_1848 PUB	DEPRESS	S 37.0	SQ_FT	34.77339-118.173576
CP_1849-001	PUB D	DEPRESS	0.1	SQ_FT 34.77171-118.173565
CP_1849-002	PUB D	DEPRESS	0.3	SQ_FT 34.77171-118.173565
CP_1849-003	PUB D	DEPRESS	16	SQ_FT 34.77171-118.173565
CP_1850 PUB	DEPRESS	S 49	SQ_FT	34.77404-118.173517
CP_1851 PUB	DEPRESS	S 13	SQ_FT	34.77182-118.173503
CP_1852 PUB	DEPRESS	5	SQ_FT	34.77335-118.173487
CP_1853 PUB	DEPRESS	S 8	SQ_FT	34.77398-118.173464
CP_1854 PUB	DEPRESS	S 8	SQ_FT	$34.774-118.173454$
CP_1855 PUB	DEPRESS	S 10	SQ_FT	34.77401-118.173435
CP_1856 PUB	DEPRESS	S 93	SQ_FT	34.77344-118.173381
CP_1857 PUB	DEPRESS	S 3	SQ_FT	34.77392-118.173346
CP_1858 PUB	DEPRESS	S 35	SQ_FT	34.77339-118.17334
CP_1859 PUB	DEPRESS	S 16	SQ_FT	34.77334-118.173257
CP_1860 PUB	DEPRESS	S 39	SQ_FT	34.77383-118.173231
CP_1861 PUB	DEPRESS	S 22	SQ_FT	34.77373-118.173227
CP_1862-001	PUB D	DEPRESS	3	SQ_FT 34.77178-118.172968
CP_1862-002	PUB D	DEPRESS	1	SQ_FT 34.77178-118.172968
CP-1862-003	PUB D	DEPRESS	3	SQ_FT 34.77178-118.172968
CP_1863 PUB	DEPRESS	S 5	SQ_FT	34.77327-118.172435
CP_1864 PUB	DEPRESS	S 151	SQ_FT	34.77332-118.172393
CP_1865 PUB	DEPRESS	S 4	SQ_FT	34.77205-118.172321
CP_1866 PUB	DEPRESS	S 215	SQ_FT	34.77337-118.17224
CP_1867 PUB	DEPRESS	S 23.00	SQ_FT	34.77333-118.172235
CP_1868 PUB	DEPRESS	S 0.01	ACRE	34.77326-118.171851
CP_1869 PUB	DEPRESS	S 69	SQ_FT	34.77333-118.171831
CP_1870 PUB	DEPRESS	S 6	SQ_FT	34.77334-118.171727
CP_1871 PUB	DEPRESS	S 327	SQ_FT	34.77097-118.171679

CP_1872 PUB	DEPRESS	28	SQ_FT	34.76984-118.171595
CP_1873 PUB	DEPRESS	4	SQ_FT	34.77044-118.171475
CP_1874 PUB	DEPRESS	7.00	SQ FT	34.76984-118.171466
CP_1875 PUB	DEPRESS	0.01	ACRE	34.77333-118.171449
CP_1876 PUB	DEPRESS	3	SQ_FT	$34.7697-118.171333$
CP_1877 PUB	DEPRESS	48	SQ_FT	34.77335-118.171332
CP_1878 PUB	DEPRESS	25.00	SQ_FT	34.77311-118.171149
CP_1879 PUB	DEPRESS	0.05	ACRE	34.77329-118.171122
CP_1880 PUB	DEPRESS	0.03	ACRE	34.77472-118.171114
CP_1881 PUB	DEPRESS	58	SQ_FT	34.77296-118.171098
$\mathrm{CP}^{-} 1882$ PUB	DEPRESS	13	SQ_FT	34.77285-118.170184
CP_1883 PUB	DEPRESS	11	SQ_FT	34.77289-118.17018
CP_1884 PUB	DEPRESS	73	SQ_FT	34.76748-118.169774
CP_1885 PUB	DEPRESS	19	SQ_FT	$34.7676-118.169674$
CP_1886 PUB	DEPRESS	3	SQ_FT	34.77262-118.169664
CP_1887 PUB	DEPRESS	6	SQ_FT	34.77214-118.169525
CP_1888 PUB	DEPRESS	76	SQ_FT	$34.7678-118.169517$
CP_1889 PUB	DEPRESS	9	SQ_FT	34.76917-118.169152
CP_1890 PUB	DEPRESS	6	SQ_FT	34.76808-118.169124
CP_1891 PUB	DEPRESS	107	SQ_FT	34.76828-118.16907
CP_1892 PUB	DEPRESS	13	SQ_FT	34.76824-118.169038
CP_1893 PUB	DEPRESS	18	SQ_FT	34.76741-118.168995
CP_1894 PUB	DEPRESS	5	SQ_FT	$34.7696-118.168994$
CP_1895 PUB	DEPRESS	36	SQ_FT	$34.768-118.16878$
CP_1896 PUB	DEPRESS	37	SQ_FT	34.76747-118.168766
CP_1897 PUB	DEPRESS	12	SQ_FT	34.76802-118.168755
CP_1898 PUB	DEPRESS	24	SQ_FT	34.76867-118.168735
CP_1899 PUB	DEPRESS	13	SQ_FT	34.76866-118.168679
CP_1900 PUB	DEPRESS	4	SQ_FT	34.76776-118.168546
CP_1901 PUB	DEPRESS	41	SQ_FT	34.76806-118.168459
CP_1902 PUB	DEPRESS	8	SQ_FT	34.76777-118.168451
CP_1903 PUB	DEPRESS	10	SQ_FT	34.76852-118.168418
CP_1904 PUB	DEPRESS	22	SQ_FT	34.76733-118.168399
CP_1905 PUB	DEPRESS	92	SQ_FT	34.76875-118.168378
CP_1906 PUB	DEPRESS	10	SQ_FT	34.76873-118.168348
CP_1907 PUB	DEPRESS	62	SQ_FT	34.76918-118.168217
CP_1908 PUB	DEPRESS	13	SQ_FT	34.76915-118.168202
CP_1909 PUB	DEPRESS	56	SQ_FT	34.76916-118.168174
CP_1910 PUB	DEPRESS	24	SQ_FT	34.77062-118.168155
CP_1911 PUB	DEPRESS	53	SQ_FT	34.76914-118.168128
CP_1912 PUB	DEPRESS	12	SQ_FT	34.76891-118.168115
CP_1913 PUB	DEPRESS	6	SQ_FT	34.76892-118.168103
CP_1914 PUB	DEPRESS	9	SQ_FT	34.76889-118.168101
CP_1915 PUB	DEPRESS	7	SQ_FT	34.76912-118.168074
CP_1916 PUB	DEPRESS	71	SQ_FT	34.77056-118.168037
CP_1917 PUB	DEPRESS	13	SQ_FT	34.7706-118.168036
CP_1918 PUB	DEPRESS	50	SQ_FT	34.77047-118.168012
CP_1919 PUB	DEPRESS	4	SQ_FT	34.76749-118.167994
CP_1920 PUB	DEPRESS	17	SQ_FT	34.76737-118.167916
CP_1921 PUB	DEPRESS	26	SQ_FT	34.76941-118.167885
CP_1922 PUB	DEPRESS	12	SQ_FT	34.76989-118.167845
CP_1923 PUB	DEPRESS	19	SQ_FT	34.76881-118.167438
CP_1924 PUB	DEPRESS	7	SQ_FT	34.76816-118.167316
CP_1925 PUB	DEPRESS	7	SQ_FT	$34.7687-118.167226$
CP_1926 PUB	DEPRESS	2	SQ_FT	$34.7687-118.167216$
CP_1927 PUB	DEPRESS	17	SQ_FT	34.76852-118.167213
CP_1928 PUB	DEPRESS	5	SQ_FT	34.76797-118.166807
CP_1929 PUB	DEPRESS	28	SQ_FT	34.76804-118.166806
CP_1930 PUB	DEPRESS	4	SQ_FT	34.76793-118.166765
CP_1931 PUB	DEPRESS	35	SQ_FT	34.76797-118.166754
CP_1932 PUB	DEPRESS	135	SQ_FT	34.76749-118.166748
CP_1933 PUB	DEPRESS	377	SQ_FT	34.76844-118.166746
CP_1934 PUB	DEPRESS	422	SQ_FT	34.76735-118.166731
CP_1935 PUB	DEPRESS	32	SQ_FT	34.76757-118.166504
CP_1936 PUB	DEPRESS	12	SQ_FT	34.76846-118.166394
CP_1937 PUB	DEPRESS	147	SQ_FT	34.76896-118.166364

CP_1938 PUB	DEPRESS	48	SQ_FT	34.76848-118.166358
CP_1939 PUB	DEPRESS	- 477	SQ_FT	34.76861-118.166353
CP_1940 PUB	DEPRESS	- 477	SQ_FT	34.76849-118.166308
CP_1941 PUB	DEPRESS	115	SQ_FT	34.76845-118.166252
CP_1942 PUB	DEPRESS	40	SQ_FT	34.76841-118.16618
CP_1943 PUB	DEPRESS	15	SQ_FT	34.76733-118.166168
CP_1944-001	PUB D	DEPRESS	3	SQ_FT 34.76843-118.166144
CP_1944-002	PUB D	DEPRESS	1	SQ_FT 34.76843-118.166144
CP_1945 PUB	DEPRESS	- 6	SQ_FT	34.76843-118.166134
CP_1946 PUB	DEPRESS	3	SQ_FT	34.76839-118.166127
CP_1947 PUB	DEPRESS	12	SQ_FT	34.76838-118.166114
CP_1948 PUB	DEPRESS	15	SQ_FT	34.76841-118.166105
CP_1949 PUB	DEPRESS	1	SQ_FT	34.76842-118.165932
CP_1950 PUB	DEPRESS	- 7	SQ_FT	34.76803-118.165863
CP_1951 PUB	DEPRESS	31	SQ_FT	34.76802-118.16573
CP_1952 PUB	DEPRESS	- 10	SQ_FT	34.76771-118.165565
CP_1953 PUB	DEPRESS	- 19	SQ_FT	34.76722-118.169388
CP_1954 PUB	DEPRESS	432	SQ_FT	34.76725-118.169334
CP_1955 PUB	DEPRESS	48	SQ_FT	34.76692-118.169296
CP_1956 PUB	DEPRESS	- 148	SQ_FT	34.76684-118.169254
CP_1957 PUB	DEPRESS	28	SQ_FT	34.76682-118.169212
CP_1958 PUB	DEPRESS	14	SQ_FT	34.76686-118.169199
CP_1959 PUB	DEPRESS	25	SQ_FT	34.76716-118.169143
CP_1960 PUB	DEPRESS	82	SQ_FT	34.76698-118.169142
CP_1961 PUB	DEPRESS	7	SQ_FT	34.76717-118.169043
CP_1962 PUB	DEPRESS	3	SQ_FT	34.76716-118.169024
CP_1963 PUB	DEPRESS	212	SQ_FT	34.76651-118.168976
CP_1964 PUB	DEPRESS	56	SQ_FT	34.76654-118.16883
CP_1965 PUB	DEPRESS	88	SQ_FT	34.76714-118.168821
CP_1966 PUB	DEPRESS	49	SQ_FT	34.76658-118.168798
CP_1967 PUB	DEPRESS	10	SQ_FT	34.76716-118.168782
CP_1968 PUB	DEPRESS	6	SQ_FT	34.76683-118.168692
CP_1969 PUB	DEPRESS	13	SQ_FT	34.76684-118.168661
CP_1970 PUB	DEPRESS	14	SQ_FT	$34.7673-118.168637$
CP_1971 PUB	DEPRESS	80	SQ_FT	34.76587-118.168532
CP_1972 PUB	DEPRESS	13	SQ_FT	34.76592-118.168495
CP_1973 PUB	DEPRESS	24	SQ_FT	34.76595-118.168461
CP_1974 PUB	DEPRESS	3	SQ_FT	34.76591-118.168433
CP_1975 PUB	DEPRESS	- 1	SQ_FT	34.76722-118.168375
CP_1976 PUB	DEPRESS	38	SQ_FT	$34.7659-118.168353$
CP_1977 PUB	DEPRESS	- 1	SQ_FT	34.76726-118.168336
CP_1978 PUB	DEPRESS	36	SQ_FT	34.76703-118.168289
CP_1979 PUB	DEPRESS	20	SQ_FT	34.76701-118.168237
CP_1980 PUB	DEPRESS	- 16	SQ_FT	34.76701-118.168211
CP_1981 PUB	DEPRESS	31	SQ_FT	34.76701-118.168185
CP_1982 PUB	DEPRESS	61	SQ_FT	34.76575-118.168085
CP_1983 PUB	DEPRESS	28	SQ_FT	34.76706-118.168055
CP_1984 PUB	DEPRESS	17	SQ_FT	34.76703-118.168048
CP_1985 PUB	DEPRESS	- 7	SQ_FT	34.76712-118.168045
CP_1986 PUB	DEPRESS	20	SQ_FT	34.76702-118.168009
CP_1987 PUB	DEPRESS	10	SQ_FT	34.76574-118.167891
CP_1988 PUB	DEPRESS	11	SQ_FT	34.76666-118.167836
CP_1989 PUB	DEPRESS	- 7	SQ_FT	34.76664-118.167834
CP_1990 PUB	DEPRESS	4	SQ_FT	$34.7666-118.167758$
CP_1991 PUB	DEPRESS	- 13	SQ_FT	34.76693-118.167746
CP_1992 PUB	DEPRESS	43	SQ_FT	34.76571-118.167639
CP_1993 PUB	DEPRESS	54	SQ_FT	$34.7664-118.167582$
CP_1994 PUB	DEPRESS	- 42.00	SQ_FT	34.76711-118.167449
CP_1995 PUB	DEPRESS	- 0.01	ACRE	34.76421-118.167316
CP_1996 PUB	DEPRESS	6	SQ_FT	34.76603-118.167293
CP_1997 PUB	DEPRESS	14	SQ_FT	34.76606-118.167288
CP_1998 PUB	DEPRESS	4	SQ_FT	34.76605-118.167267
CP_1999 PUB	DEPRESS	28	SQ_FT	34.76596-118.167223
CP_2000 PUB	DEPRESS	6	SQ_FT	34.76585-118.16706
CP_2001 PUB	DEPRESS	51	SQ_FT	34.76588-118.167042
CP_2002 PUB	DEPRESS	54	SQ_FT	34.76431-118.167025

CP_2003 PUB	DEPRESS	391	SQ_FT	$34.7666-118.167023$
CP_2004 PUB	DEPRESS	21	SQ_FT	34.76506-118.166958
CP_2005 PUB	DEPRESS	450	SQ_FT	34.76429-118.166954
CP_2006 PUB	DEPRESS	17	SQ_FT	34.76505-118.166934
CP_2007 PUB	DEPRESS	61	SQ_FT	34.76517-118.166925
CP_2008 PUB	DEPRESS	26	SQ_FT	34.76635-118.166856
CP_2009 PUB	DEPRESS	92	SQ_FT	34.76557-118.166793
CP_2010 PUB	DEPRESS	134	SQ_FT	34.76659-118.166792
CP_2011 PUB	DEPRESS	16	SQ_FT	34.76655-118.166756
CP_2012 PUB	DEPRESS	54	SQ_FT	34.76654-118.166743
CP_2013 PUB	DEPRESS	25	SQ_FT	34.76608-118.166731
CP_2014 PUB	DEPRESS	42	SQ_FT	34.76573-118.166728
CP_2015 PUB	DEPRESS	177	SQ_FT	34.76399-118.166722
CP_2016 PUB	DEPRESS	108	SQ_FT	$34.7665-118.166715$
CP_2017 PUB	DEPRESS	51	SQ_FT	34.76616-118.166704
CP_2018 PUB	DEPRESS	394	SQ_FT	34.76453-118.1667
CP_2019 PUB	DEPRESS	5	SQ_FT	34.76516-118.1667
CP_2020 PUB	DEPRESS	68	SQ_FT	34.76525-118.166697
CP_2021 PUB	DEPRESS	15	SQ_FT	$34.7643-118.166694$
CP_2022 PUB	DEPRESS	101	SQ_FT	34.76481-118.166694
CP_2023 PUB	DEPRESS	34	SQ_FT	34.76393-118.166693
CP_2024 PUB	DEPRESS	216	SQ_FT	$34.764-118.166687$
CP_2025 PUB	DEPRESS	333	SQ_FT	34.76324-118.166687
CP_2026 PUB	DEPRESS	4	SQ_FT	34.76652-118.166671
CP_2027 PUB	DEPRESS	10	SQ_FT	34.76452-118.166653
CP_2028 PUB	DEPRESS	29	SQ_FT	34.76523-118.166433
CP_2029 PUB	DEPRESS	133	SQ_FT	34.76635-118.166364
CP_2030 PUB	DEPRESS	56	SQ_FT	$34.7645-118.166318$
CP_2031 PUB	DEPRESS	29	SQ_FT	34.76549-118.166188
CP_2032 PUB	DEPRESS	31	SQ_FT	34.76436-118.166185
CP_2033 PUB	DEPRESS	24	SQ_FT	34.76593-118.166181
CP_2034 PUB	DEPRESS	52	SQ_FT	34.76462-118.166154
CP_2035 PUB	DEPRESS	38	SQ_FT	34.76606-118.166152
CP_2036 PUB	DEPRESS	22	SQ_FT	34.76592-118.166149
CP_2037 PUB	DEPRESS	9	SQ_FT	34.76591-118.166113
CP_2038 PUB	DEPRESS	31	SQ_FT	34.76451-118.165973
CP_2039 PUB	DEPRESS	16	SQ_FT	34.76445-118.165899
CP_2040 PUB	DEPRESS	3	SQ_FT	34.76606-118.165855
CP_2041 PUB	DEPRESS	19	SQ_FT	$34.766-118.165754$
CP_2042 PUB	DEPRESS	21	SQ_FT	34.76542-118.165714
CP_2043 PUB	DEPRESS	17.00	SQ_FT	$34.7662-118.165697$
CP_2044 PUB	DEPRESS	0.02	ACRE	34.76451-118.165608
CP_2045 PUB	DEPRESS	79	SQ_FT	34.76551-118.165594
CP_2046 PUB	DEPRESS	75	SQ_FT	34.76605-118.16558
CP_2047 PUB	DEPRESS	11	SQ_FT	34.76567-118.165575
CP_2048 PUB	DEPRESS	15	SQ_FT	34.76534-118.16557
CP_2049 PUB	DEPRESS	181	SQ_FT	34.76594-118.165539
CP_2050 PUB	DEPRESS	33	SQ_FT	34.76402-118.165484
CP_2051 PUB	DEPRESS	4.00	SQ_FT	34.76393-118.165469
CP_2052 PUB	DEPRESS	0.14	ACRE	34.76579-118.165468
CP_2053 PUB	DEPRESS	18	SQ_FT	34.76604-118.1654
CP_2054 PUB	DEPRESS	15	SQ_FT	$34.7645-118.16539$
CP_2055 PUB	DEPRESS	87	SQ_FT	34.76636-118.165339
CP_2056 PUB	DEPRESS	15	SQ_FT	34.76606-118.165337
CP_2057 PUB	DEPRESS	22	SQ_FT	34.76477-118.1653
CP_2058 PUB	DEPRESS	14	SQ_FT	34.76618-118.165298
CP_2059 PUB	DEPRESS	141	SQ_FT	34.76484-118.165251
CP_2060 PUB	DEPRESS	20	SQ_FT	$34.766-118.165246$
CP_2061 PUB	DEPRESS	5	SQ_FT	34.76465-118.165221
CP_2062 PUB	DEPRESS	15	SQ_FT	34.76455-118.165205
CP_2063 PUB	DEPRESS	11	SQ_FT	34.76645-118.165181
CP_2064 PUB	DEPRESS	22	SQ_FT	34.76599-118.165172
CP_2065 PUB	DEPRESS	78	SQ_FT	34.76575-118.165166
CP_2066 PUB	DEPRESS	3	SQ_FT	34.76645-118.16514
CP_2067 PUB	DEPRESS	13	SQ_FT	34.76548-118.165079
CP_2068 PUB	DEPRESS	3	SQ_FT	34.76475-118.165064

CP_2069 PUB	DEPRESS	56	SQ_FT	34.76547-118.165043
CP_2070 PUB	DEPRESS	64	SQ_FT	34.76471-118.165032
CP_2071 PUB	DEPRESS	-117	SQ_FT	34.76459-118.165025
CP_2072 PUB	DEPRESS	12	SQ_FT	34.76547-118.164994
CP_2073 PUB	DEPRESS	- 9	SQ_FT	34.76462-118.164945
CP_2074 PUB	DEPRESS	8	SQ_FT	34.76548-118.164937
CP_2075-001	PUB D	DEPRESS	3	SQ_FT $34.7646-118.164932$
CP_2075-002	PUB D	DEPRESS	8	SQ_FT 34.7646 -118.164932
CP_2076 PUB	DEPRESS	12	SQ_FT	34.76545-118.164913
CP_2077 PUB	DEPRESS	35	SQ_FT	34.76455-118.164899
CP_2078 PUB	DEPRESS	46	SQ_FT	34.76459-118.164899
CP_2079 PUB	DEPRESS	8	SQ_FT	34.76456-118.164861
CP_2080 PUB	DEPRESS	80	SQ_FT	34.76454-118.164835
CP_2081 PUB	DEPRESS	4	SQ_FT	34.76457-118.164806
CP_2082 PUB	DEPRESS	101	SQ_FT	34.76473-118.16479
CP_2083 PUB	DEPRESS	31	SQ_FT	34.7666-118.164753
CP_2084 PUB	DEPRESS	13	SQ_FT	34.7654-118.164729
CP_2085 PUB	DEPRESS	26	SQ_FT	34.76528-118.164727
CP_2086 PUB	DEPRESS	28	SQ_FT	34.76656-118.164721
CP_2087 PUB	DEPRESS	11	SQ_FT	34.76658-118.164704
CP_2088 PUB	DEPRESS	- 7	SQ_FT	34.76657-118.164701
CP_2089 PUB	DEPRESS	15	SQ_FT	34.76473-118.164692
CP_2090 PUB	DEPRESS	20	SQ_FT	34.76438-118.164656
CP_2091 PUB	DEPRESS	30	SQ_FT	34.76441-118.164602
CP_2092 PUB	DEPRESS	18	SQ_FT	34.76637-118.164593
CP_2093 PUB	DEPRESS	37	SQ_FT	34.76418-118.164569
CP_2094 PUB	DEPRESS	19	SQ_FT	34.76441-118.164484
CP_2095 PUB	DEPRESS	-11	SQ_FT	$34.7644-118.164464$
CP_2096 PUB	DEPRESS	59	SQ_FT	34.76438-118.164414
CP_2097 PUB	DEPRESS	45	SQ_FT	$34.7646-118.164248$
CP_2098 PUB	DEPRESS	5	SQ_FT	34.76625-118.164223
CP_2099 PUB	DEPRESS	51	SQ_FT	$34.7652-118.164136$
CP_2100 PUB	DEPRESS	41	SQ_FT	34.76456-118.164133
CP_2101 PUB	DEPRESS	80	SQ_FT	$34.7645-118.164102$
CP_2102 PUB	DEPRESS	21	SQ_FT	34.76586-118.16406
CP_2103 PUB	DEPRESS	14	SQ_FT	34.76586-118.164029
CP_2104 PUB	DEPRESS	155	SQ_FT	34.76455-118.163999
CP_2105 PUB	DEPRESS	20	SQ_FT	34.76418-118.163984
CP_2106 PUB	DEPRESS	112	SQ_FT	34.76539-118.163974
CP_2107 PUB	DEPRESS	8	SQ_FT	34.76554-118.163892
CP_2108 PUB	DEPRESS	49	SQ_FT	$34.7641-118.163866$
CP_2109 PUB	DEPRESS	45	SQ_FT	34.76555-118.163845
CP_2110 PUB	DEPRESS	19	SQ_FT	34.76434-118.163781
CP_2111 PUB	DEPRESS	- 12	SQ_FT	34.76389-118.16375
CP_2112 PUB	DEPRESS	44	SQ_FT	34.76426-118.163598
CP_2113 PUB	DEPRESS	4	SQ_FT	34.76426-118.163542
CP_2114 PUB	DEPRESS	71	SQ_FT	34.76423-118.163508
CP_2115 PUB	DEPRESS	10	SQ_FT	34.76421-118.163454
CP_2116 PUB	DEPRESS	29	SQ_FT	34.76423-118.163432
CP_2117 PUB	DEPRESS	54	SQ_FT	34.76408-118.163423
CP_2118 PUB	DEPRESS	- 9	SQ_FT	34.76394-118.163402
CP_2119 PUB	DEPRESS	3	SQ_FT	34.76342-118.163398
CP_2120 PUB	DEPRESS	13	SQ_FT	34.76343-118.16336
CP_2121 PUB	DEPRESS	12	SQ_FT	34.76309-118.163355
CP_2122 PUB	DEPRESS	- 7	SQ_FT	34.76351-118.163329
CP_2123 PUB	DEPRESS	66	SQ_FT	34.76392-118.163318
CP_2124 PUB	DEPRESS	10	SQ_FT	34.76403-118.16327
CP_2125 PUB	DEPRESS	76	SQ_FT	34.76392-118.163256
CP_2126 PUB	DEPRESS	57	SQ_FT	34.76403-118.163219
CP_2127 PUB	DEPRESS	- 9	SQ_FT	34.76393-118.163175
CP_2128 PUB	DEPRESS	13	SQ_FT	$34.764-118.163142$
CP_2129 PUB	DEPRESS	15	SQ_FT	34.76347-118.163142
CP_2130 PUB	DEPRESS	- 8	SQ_FT	34.76368-118.163127
CP_2131 PUB	DEPRESS	- 7	SQ_FT	34.76395-118.163014
CP_2132 PUB	DEPRESS	39	SQ_FT	34.76404-118.162979
CP_2133 PUB	DEPRESS	14	SQ_FT	34.76394-118.162949

CP_2134 PUB	DEPRESS	S	SQ_FT	34.76372-118.162929
CP_2135 PUB	DEPRESS	- 7	SQ_FT	34.76351-118.162875
CP_2136 PUB	DEPRESS	S	SQ_FT	34.76338-118.162874
CP_2137 PUB	DEPRESS	11	SQ_FT	34.76396-118.162857
CP_2138 PUB	DEPRESS	35	SQ_FT	34.76399-118.162825
CP_2139 PUB	DEPRESS	22	SQ_FT	34.76393-118.162687
CP_2140 PUB	DEPRESS	174	SQ_FT	34.76397-118.162675
CP_2141 PUB	DEPRESS	- 9	SQ_FT	34.76226-118.162328
CP_2142 PUB	DEPRESS	3	SQ_FT	34.76225-118.162303
CP_2143 PUB	DEPRESS	23	SQ_FT	$34.7623-118.162237$
CP_2144 PUB	DEPRESS	19	SQ_FT	34.76158-118.162229
CP_2145 PUB	DEPRESS	28	SQ_FT	34.76156-118.162199
CP_2146 PUB	DEPRESS	50	SQ_FT	$34.7594-118.161941$
CP_2147 PUB	DEPRESS	4 4	SQ_FT	34.75945-118.16189
CP_2148 PUB	DEPRESS	- 6	SQ_FT	34.75951-118.161887
CP_2149-001	PUB D	DEPRESS	4	SQ_FT 34.75946-118.161877
CP_2149-002	PUB D	DEPRESS	16	SQ_FT 34.75946-118.161877
CP_2150 PUB	DEPRESS	- 139	SQ_FT	34.75936-118.161676
CP_2151 PUB	DEPRESS	36	SQ_FT	34.76201-118.161543
CP_2152 PUB	DEPRESS	16	SQ_FT	34.76199-118.161497
CP_2153 PUB	DEPRESS	16	SQ_FT	$34.762-118.161476$
CP_2154 PUB	DEPRESS	35	SQ_FT	34.76201-118.161456
CP_2155 PUB	DEPRESS	16	SQ_FT	34.76184-118.161419
CP_2156 PUB	DEPRESS	73	SQ_FT	34.76082-118.160541
CP_2157 PUB	DEPRESS	5	SQ_FT	34.75874-118.163194
CP_2158 PUB	DEPRESS	12	SQ_FT	34.75827-118.162192
CP_2159 PUB	DEPRESS	38	SQ_FT	34.75832-118.162189
CP_2160 PUB	DEPRESS	21	SQ_FT	34.75838-118.162184
CP_2161 PUB	DEPRESS	19	SQ_FT	34.75849-118.162182
CP_2162 PUB	DEPRESS	17	SQ_FT	34.75914-118.161663
CP_2163 PUB	DEPRESS	28	SQ_FT	34.75877-118.160973
CP_2164 PUB	DEPRESS	19	SQ_FT	34.75876-118.160964
CP_2165 PUB	DEPRESS	4	SQ_FT	34.75683-118.160842
CP_2166 PUB	DEPRESS	15	SQ_FT	34.75591-118.160068
CP_2167 PUB	DEPRESS	10	SQ_FT	34.75572-118.159428
CP_2168 PUB	DEPRESS	21	SQ_FT	34.75809-118.159284
CP_2169 PUB	DEPRESS	26	SQ_FT	34.75747-118.158309
CP_2170 PUB	DEPRESS	65	SQ_FT	34.75495-118.157753
CP_2171 PUB	DEPRESS	70	SQ_FT	34.75467-118.157746
CP_2172 PUB	DEPRESS	47	SQ_FT	34.75682-118.157741
CP_2173-001	PUB D	DEPRESS	47	SQ_FT 34.75521-118.157451
CP_2173-002	PUB D	DEPRESS	32	SQ_FT 34.75521-118.157451
CP_2174 PUB	DEPRESS	S 3	SQ_FT	34.75537-118.157321
CP_2175 PUB	DEPRESS	25	SQ_FT	34.75522-118.157169
CP_2176 PUB	DEPRESS	11	SQ_FT	34.75258-118.156001
CP_2177 PUB	DEPRESS	19	SQ_FT	34.75312-118.155989
CP_2178-001	PUB D	DEPRESS	28	SQ_FT 34.75288-118.155801
CP_2178-002	PUB D	DEPRESS	55	SQ_FT 34.75288-118.155801
CP_2179 PUB	DEPRESS	- 75	SQ_FT	34.75164-118.155078
CP_2180 PUB	DEPRESS	39	SQ_FT	34.75124-118.156234
CP_2181 PUB	DEPRESS	29	SQ_FT	34.75062-118.15495
CP_2182-001	PUB D	DEPRESS	46	SQ_FT 34.75052-118.154944
CP_2182-002	PUB D	DEPRESS	5	SQ_FT 34.75052-118.154944
CP_2183 PUB	DEPRESS	- 75	SQ_FT	34.75016-118.154933
CP_2184 PUB	DEPRESS	52	SQ_FT	34.74943-118.154885
CP_2185 PUB	DEPRESS	42	SQ_FT	34.74938-118.15487
CP_2186 PUB	DEPRESS	70	SQ_FT	34.74923-118.154867
CP_2187 PUB	DEPRESS	12	SQ_FT	34.74934-118.154867
CP_2188 PUB	DEPRESS	S	SQ_FT	34.74931-118.154865
CP_2189 PUB	DEPRESS	25	SQ_FT	34.74914-118.154863
CP_2190 PUB	DEPRESS	- 19	SQ_FT	34.74876-118.154851
CP_2191 PUB	DEPRESS	70	SQ_FT	34.74856-118.154836
CP_2192 PUB	DEPRESS	- 8	SQ_FT	34.74834-118.15483
CP_2193 PUB	DEPRESS	15	SQ_FT	34.74752-118.154361
CP_2194 PUB	DEPRESS	15	SQ_FT	34.74685-118.153664
CP_2195 PUB	DEPRESS	- 19.00	SQ_FT	34.74593-118.153405

CP_2196 PUB	DEPRESS	- 0.02	ACRE	34.74799-118.153161
CP_2197 PUB	DEPRESS	28	SQ_FT	$34.7461-118.153131$
CP_2198 PUB	DEPRESS	41	SQ_FT	34.75024-118.153128
CP_2199 PUB	DEPRESS	18	SQ_FT	34.74977-118.153114
CP_2200 PUB	DEPRESS	- 24	SQ_FT	34.74719-118.153099
CP_2201 PUB	DEPRESS	106	SQ_FT	34.74869-118.153099
CP_2202 PUB	DEPRESS	16	SQ_FT	34.74983-118.153097
CP_2203 PUB	DEPRESS	5	SQ_FT	34.74978-118.153094
CP_2204 PUB	DEPRESS	- 18	SQ_FT	34.74862-118.153091
CP_2205 PUB	DEPRESS	437	SQ_FT	$34.7481-118.153076$
CP_2206 PUB	DEPRESS	- 12	SQ_FT	34.74719-118.153059
CP_2207 PUB	DEPRESS	7	SQ_FT	34.74533-118.15303
CP_2208 PUB	DEPRESS	45	SQ_FT	34.74716-118.153021
CP_2209 PUB	DEPRESS	187	SQ_FT	34.74723-118.153006
CP_2210 PUB	DEPRESS	6	SQ_FT	$34.7453-118.153004$
CP_2211 PUB	DEPRESS	15	SQ_FT	$34.7465-118.152983$
CP_2212 PUB	DEPRESS	67	SQ_FT	34.74714-118.152952
CP_2213 PUB	DEPRESS	18	SQ_FT	34.74528-118.152916
CP_2214 PUB	DEPRESS	8	SQ_FT	34.74726-118.152898
CP_2215 PUB	DEPRESS	S	SQ_FT	34.74528-118.152894
CP_2216 PUB	DEPRESS	53	SQ_FT	34.74542-118.152862
CP_2217-001	PUB	DEPRESS	107	SQ_FT 34.74574-118.153253
CP_2217-002	PUB D	DEPRESS	1	SQ_FT 34.74574-118.153253
CP_2217-003	PUB D	DEPRESS	382.00	SQ_FT 34.74585-118.152856
CP_2217-004	PUB D	DEPRESS	0.02	ACRE 34.74585-118.152856
CP_2217-005	PUB D	DEPRESS	2	SQ_FT 34.74585-118.152856
CP_2217-006	PUB D	DEPRESS	326	SQ_FT 34.74585-118.152856
CP_2217-007	PUB D	DEPRESS	26.00	SQ_FT 34.74585-118.152856
CP_2218 PUB	DEPRESS	- 0.06	ACRE	34.74691-118.152742
CP_2219 PUB	DEPRESS	15	SQ_FT	34.74962-118.15271
CP_2220 PUB	DEPRESS	40	SQ_FT	34.74607-118.152695
CP_2221 PUB	DEPRESS	90	SQ_FT	34.74728-118.152585
CP_2222 PUB	DEPRESS	2	SQ_FT	$34.7478-118.152538$
CP_2223 PUB	DEPRESS	5	SQ_FT	34.74779-118.152512
CP_2224 PUB	DEPRESS	51	SQ_FT	34.74627-118.152458
CP_2225 PUB	DEPRESS	12	SQ_FT	34.74779-118.15245
CP_2226 PUB	DEPRESS	10	SQ_FT	34.74588-118.152436
CP_2227 PUB	DEPRESS	4	SQ_FT	34.74723-118.152401
CP_2228 PUB	DEPRESS	- 66.00	SQ_FT	34.74735-118.152394
CP_2229 PUB	DEPRESS	0.01	ACRE	$34.748-118.152371$
CP_2230 PUB	DEPRESS	14	SQ_FT	34.74739-118.152357
CP_2231 PUB	DEPRESS	- 54	SQ_FT	34.74613-118.152334
CP_2232 PUB	DEPRESS	- 10	SQ_FT	34.74515-118.152315
CP_2233 PUB	DEPRESS	47	SQ_FT	34.74743-118.152314
CP_2234 PUB	DEPRESS	- 2	SQ_FT	34.74717-118.152303
CP_2235 PUB	DEPRESS	3	SQ_FT	34.74715-118.152276
CP_2236 PUB	DEPRESS	4 4	SQ_FT	34.74721-118.15227
CP_2237 PUB	DEPRESS	9	SQ_FT	34.74719-118.152223
CP_2238-001	PUB	DEPRESS	2	SQ_FT 34.74913-118.152156
CP_2238-002	PUB D	DEPRESS	338.00	SQ_FT 34.74913-118.152156
CP_2238-003	PUB D	DEPRESS	0.01	ACRE 34.74913-118.152156
CP_2238-004	PUB D	DEPRESS	210	SQ_FT 34.74913-118.152156
CP_2239 PUB	DEPRESS	S 42	SQ_FT	34.74901-118.152167
CP_2240 PUB	DEPRESS	- 7.00	SQ_FT	34.74774-118.152156
CP_2241 PUB	DEPRESS	- 0.26	ACRE	$34.7477-118.15215$
CP_2242 PUB	DEPRESS	3	SQ_FT	34.74718-118.15213
CP_2243 PUB	DEPRESS	216	SQ_FT	34.74799-118.152074
CP_2244-001	PUB D	DEPRESS	62	SQ_FT 34.74826-118.15201
CP-2244-002	PUB D	DEPRESS	2	SQ_FT 34.74826-118.15201
CP_2244-003	PUB D	DEPRESS	7	SQ_FT 34.74826-118.15201
CP_2244-004	PUB D	DEPRESS	95.0	SQ_FT 34.74826-118.15201
CP_2244-005	PUB	DEPRESS	0.1	SQ_FT 34.74826-118.15201
CP_2245 PUB	DEPRESS	S 30	SQ_FT	34.74387-118.151951
CP_2246 PUB	DEPRESS	36	SQ_FT	34.74569-118.151933
CP_2247 PUB	DEPRESS	41	SQ_FT	34.74778-118.151915
CP_2248 PUB	DEPRESS	48	SQ_FT	34.74552-118.151877

CP_2249 PUB	DEPRESS	255	SQ_FT	$34.74612-118.151768$	
CP_2250 PUB	DEPRESS	17	SQ_FT	$34.74761-118.151721$	
CP_2251 PUB	DEPRESS	15	SQ_FT	$34.74895-118.151613$	
CP_2252 PUB	DEPRESS	16	SQ_FT	$34.74828-118.151592$	
CP_2253 PUB	DEPRESS	58	SQ_FT	$34.74834-118.151535$	
CP_2254-001	PUB	DEPRESS	17	SQ_FT	34.7493

CP_2301 PUB	DEPRESS	150	SQ_FT	34.74538-118.150155
CP_2302 PUB	DEPRESS	21	SQ_FT	$34.7451-118.150134$
CP_2303 PUB	DEPRESS	32	SQ_FT	34.74367-118.15012
CP_2304 PUB	DEPRESS	88	SQ_FT	34.74684-118.150114
CP_2305 PUB	DEPRESS	71	SQ_FT	34.74449-118.150113
CP_2306 PUB	DEPRESS	6	SQ_FT	34.74422-118.150104
CP_2307 PUB	DEPRESS	5	SQ_FT	34.74543-118.150086
CP_2308 PUB	DEPRESS	51	SQ_FT	34.7438-118.150081
CP_2309 PUB	DEPRESS	-11	SQ_FT	34.74535-118.150073
CP_2310 PUB	DEPRESS	16	SQ_FT	34.7442-118.150072
CP_2311 PUB	DEPRESS	12	SQ_FT	34.74377-118.15007
CP_2312 PUB	DEPRESS	37	SQ_FT	34.74552-118.150067
CP_2313 PUB	DEPRESS	81	SQ_FT	34.74385-118.150053
CP_2314 PUB	DEPRESS	8	SQ_FT	34.74454-118.150044
CP_2315 PUB	DEPRESS	19	SQ_FT	34.74478-118.150037
CP_2316 PUB	DEPRESS	44	SQ_FT	34.74472-118.150031
CP_2317 PUB	DEPRESS	14	SQ_FT	34.74532-118.150027
CP_2318 PUB	DEPRESS	27	SQ_FT	34.74394-118.150006
CP_2319 PUB	DEPRESS	22	SQ_FT	34.74513-118.149999
CP_2320 PUB	DEPRESS	17	SQ_FT	34.74504-118.149994
CP_2321 PUB	DEPRESS	32	SQ_FT	34.74396-118.149992
CP_2322 PUB	DEPRESS	19	SQ_FT	34.74389-118.149974
CP_2323 PUB	DEPRESS	14	SQ_FT	34.74515-118.149974
CP_2324 PUB	DEPRESS	29	SQ_FT	34.74453-118.14997
CP_2325 PUB	DEPRESS	15	SQ_FT	34.74406-118.149967
CP_2326 PUB	DEPRESS	43	SQ_FT	34.74375-118.149965
CP_2327 PUB	DEPRESS	13	SQ_FT	34.74401-118.14996
CP_2328 PUB	DEPRESS	15	SQ_FT	34.74503-118.149955
CP_2329 PUB	DEPRESS	41	SQ_FT	34.74382-118.149947
CP_2330 PUB	DEPRESS	15	SQ_FT	34.74481-118.149934
CP_2331 PUB	DEPRESS	16	SQ_FT	34.74502-118.149928
CP_2332 PUB	DEPRESS	6	SQ_FT	34.74465-118.149928
CP_2333 PUB	DEPRESS	15	SQ_FT	34.7445-118.149924
CP_2334 PUB	DEPRESS	178	SQ_FT	34.74343-118.149918
CP_2335 PUB	DEPRESS	24	SQ_FT	34.74458-118.149907
CP_2336 PUB	DEPRESS	19	SQ_FT	34.74441-118.149892
CP_2337 PUB	DEPRESS	25	SQ_FT	34.74437-118.149881
CP_2338 PUB	DEPRESS	25	SQ_FT	34.74628-118.149879
CP_2339 PUB	DEPRESS	15	SQ_FT	34.74433-118.149878
CP_2340 PUB	DEPRESS	13	SQ_FT	34.74504-118.149864
CP_2341 PUB	DEPRESS	- 8	SQ_FT	34.74428-118.149863
CP_2342 PUB	DEPRESS	29	SQ_FT	$34.7465-118.149861$
CP_2343 PUB	DEPRESS	11	SQ_FT	34.74486-118.14986
CP_2344 PUB	DEPRESS	- 8	SQ_FT	34.74455-118.149859
CP_2345 PUB	DEPRESS	26	SQ_FT	34.7441-118.149857
CP_2346 PUB	DEPRESS	25	SQ_FT	34.74529-118.14985
CP_2347 PUB	DEPRESS	111	SQ_FT	34.74349-118.149842
CP_2348 PUB	DEPRESS	14	SQ_FT	34.74413-118.149841
CP_2349 PUB	DEPRESS	13	SQ_FT	34.74419-118.149835
CP_2350 PUB	DEPRESS	103	SQ_FT	34.74537-118.149826
CP_2351 PUB	DEPRESS	13	SQ_FT	34.74366-118.149823
CP_2352 PUB	DEPRESS	36	SQ_FT	34.74557-118.149802
CP_2353-001	PUB D	DEPRESS	193	SQ_FT 34.74453-118.149798
CP_2353-002	PUB D	DEPRESS	84	SQ_FT 34.74453-118.149798
CP_2354 PUB	DEPRESS	- 7	SQ_FT	34.74554-118.149785
CP_2355 PUB	DEPRESS	16	SQ_FT	34.7446-118.149779
CP_2356 PUB	DEPRESS	151	SQ_FT	34.74355-118.149777
CP_2357 PUB	DEPRESS	18	SQ_FT	34.74577-118.149763
CP_2358 PUB	DEPRESS	108	SQ_FT	34.74372-118.14976
CP_2359 PUB	DEPRESS	48	SQ_FT	34.74376-118.149752
CP_2360 PUB	DEPRESS	47	SQ_FT	34.74562-118.149745
CP_2361 PUB	DEPRESS	57	SQ_FT	34.74526-118.149727
CP_2362 PUB	DEPRESS	23	SQ_FT	34.74508-118.149718
CP_2363 PUB	DEPRESS	22	SQ_FT	34.74449-118.149698
CP_2364 PUB	DEPRESS	72	SQ_FT	34.74569-118.149693
CP_2365 PUB	DEPRESS	9	SQ_FT	34.74461-118.149691

CP_2366 PUB	DEPRESS	11.00	SQ_FT	$34.746-118.14968$
CP_2367 PUB	DEPRESS	0.08	ACRE	34.74387-118.149678
CP_2368 PUB	DEPRESS	438	SQ_FT	34.74425-118.149676
CP_2369 PUB	DEPRESS	22	SQ_FT	34.74518-118.149673
CP 2370 PUB	DEPRESS	48	SQ FT	34.74504-118.149668
CP_2371 PUB	DEPRESS	47	SQ_FT	34.74431-118.149657
CP_2372 PUB	DEPRESS	27	SQ_FT	$34.744-118.149657$
CP_2373 PUB	DEPRESS	6	SQ_FT	34.74423-118.149654
CP_2374 PUB	DEPRESS	177	SQ_FT	34.74545-118.149651
CP_2375 PUB	DEPRESS	5	SQ_FT	34.74449-118.149649
CP_2376 PUB	DEPRESS	15	SQ_FT	34.74481-118.149635
CP_2377 PUB	DEPRESS	10	SQ_FT	34.74484-118.149632
CP_2378 PUB	DEPRESS	28	SQ_FT	34.74464-118.149627
CP_2379 PUB	DEPRESS	14	SQ_FT	34.7443 -118.149626
CP_2380 PUB	DEPRESS	8	SQ_FT	$34.7444-118.14962$
CP_2381 PUB	DEPRESS	16	SQ_FT	34.74467-118.149617
CP_2382 PUB	DEPRESS	14	SQ_FT	34.74475-118.149615
CP_2383 PUB	DEPRESS	22	SQ_FT	34.74576-118.149615
CP_2384 PUB	DEPRESS	17	SQ_FT	34.74431-118.149601
CP_2385 PUB	DEPRESS	28	SQ_FT	34.74392-118.149601
CP_2386 PUB	DEPRESS	97	SQ_FT	34.74574-118.149592
CP_2387 PUB	DEPRESS	43	SQ_FT	34.74396-118.149582
CP_2388 PUB	DEPRESS	84	SQ_FT	34.74581-118.149578
CP_2389-001	PUB		64.00	SQ_FT 34.7437 -118.149555
CP_2389-002	PUB		0.03	ACRE $34.7437-118.149555$
CP_2390 PUB	DEPRESS	22	SQ_FT	34.74498-118.149547
CP_2391 PUB	DEPRESS	43	SQ_FT	34.74352-118.149538
CP_2392 PUB	DEPRESS	45	SQ_FT	34.74528-118.149523
CP_2393 PUB	DEPRESS	31	SQ_FT	34.74505-118.149506
CP_2394 PUB	DEPRESS	27	SQ_FT	34.74379-118.149498
CP_2395 PUB	DEPRESS	23	SQ_FT	34.74427-118.149487
CP_2396 PUB	DEPRESS	3	SQ_FT	$34.7438-118.149483$
CP_2397 PUB	DEPRESS	20	SQ_FT	34.74527-118.14948
CP_2398 PUB	DEPRESS	87	SQ_FT	34.74516-118.149463
CP_2399 PUB	DEPRESS	10	SQ_FT	34.74407-118.149463
CP_2400 PUB	DEPRESS	5	SQ_FT	34.74361-118.149452
CP_2401 PUB	DEPRESS	19	SQ_FT	34.74405-118.14945
CP_2402 PUB	DEPRESS	6	SQ_FT	34.74417-118.149449
CP_2403 PUB	DEPRESS	46	SQ_FT	34.74554-118.149439
CP_2404 PUB	DEPRESS	9	SQ_FT	34.74386-118.149437
CP_2205 PUB	DEPRESS	7	SQ_FT	34.74399-118.149428
CP_2406 PUB	DEPRESS	5	SQ_FT	34.74417-118.149423
CP_2407 PUB	DEPRESS	52	SQ_FT	34.74516-118.149414
CP_2408 PUB	DEPRESS	13	SQ_FT	34.74407-118.149413
CP_2409 PUB	DEPRESS	34	SQ_FT	34.74413-118.149411
CP_2410 PUB	DEPRESS	21	SQ_FT	34.74346-118.149405
CP_2411 PUB	DEPRESS	49	SQ_FT	34.74528-118.149397
CP_2412 PUB	DEPRESS	40	SQ_FT	34.74532-118.149385
CP_2413 PUB	DEPRESS	15	SQ_FT	34.74533-118.149381
CP_2414 PUB	DEPRESS	19	SQ_FT	34.74582-118.14938
CP_2415 PUB	DEPRESS	13	SQ_FT	34.74436-118.149378
CP_2416 PUB	DEPRESS	68	SQ_FT	34.74448-118.149372
CP_2417 PUB	DEPRESS	36	SQ_FT	34.74423-118.149366
CP_2418 PUB	DEPRESS	45	SQ_FT	34.74383-118.149345
CP_2419 PUB	DEPRESS	41	SQ_FT	34.74388-118.149337
CP_2420 PUB	DEPRESS	81	SQ_FT	34.74572-118.149324
CP_2421 PUB	DEPRESS	128	SQ_FT	34.74401-118.149324
CP_2422 PUB	DEPRESS	33	SQ_FT	34.74384-118.149319
CP_2423 PUB	DEPRESS	74	SQ_FT	34.74515-118.149319
CP_2424 PUB	DEPRESS	49	SQ_FT	34.74543-118.149314
CP_2425 PUB	DEPRESS	15	SQ_FT	34.74508-118.149305
CP_2426 PUB	DEPRESS	12	SQ_FT	$34.745-118.149289$
CP_2427 PUB	DEPRESS	22	SQ_FT	34.74395-118.149282
CP_2428 PUB	DEPRESS	5	SQ_FT	34.74463-118.149281
CP_2429 PUB	DEPRESS	45	SQ_FT	34.74503-118.149277
CP_2430 PUB	DEPRESS	8	SQ_FT	34.74441-118.149274

CP_2431 PUB CP_2432 PUB CP ${ }^{-} 2433$ PUB CP_2434 PUB CP_2435 PUB CP 2436 PUB CP_2437 PUB CP 2438 PUB CP 2439 PUB CP_2440 PUB CP 2441 PUB CP_2442 PUB CP_2443 PUB CP 2444 PUB CP_2445 PUB CP_2446 PUB CP 2447 PUB CP_2448 PUB CP_2449 PUB CP-2450 PUB CP_2451 PUB CP_2452 PUB CP ${ }^{-} 2453$ PUB CP_2454 PUB CP_2455 PUB CP_2456 PUB CP_2457 PUB CP_2458 PUB CP_2459 PUB CP_2460 PUB CP_2461 PUB CP_2462 PUB CP_2463 PUB CP_2464 PUB CP_2465 PUB CP_2466 PUB CP 2467 PUB CP 2468 PUB CP_2469 PUB CP 2470 PUB CP 2471 PUB CP_2472 PUB CP 2473 PUB CP 2474 PUB CP_2475 PUB CP 2476 PUB CP_2477 PUB CP_2478 PUB CP 2479 PUB CP_2480 PUB CP_2481 PUB CP_2482 PUB CP_2483 PUB CP_2484 PUB CP 2485 PUB CP_2486 PUB CP_2487 PUB CP_2488 PUB CP_2489 PUB CP_2490 PUB CP ${ }^{-} 2491$ PUB CP_2492 PUB CP_2493 PUB CP_2494 PUB CP_2495 PUB CP_2496 PUB

DEPRESS	10	SQ_FT	34.74409-118.149273
DEPRESS	20	SQ_FT	34.74506-118.149271
DEPRESS	25	SQ_FT	34.74399-118.149245
DEPRESS	39	SQ_FT	34.74454-118.149241
DEPRESS	25	SQ_FT	34.74496-118.149238
DEPRESS	32	SQ_FT	34.74351-118.149237
DEPRESS	215	SQ_FT	34.74555-118.14923
DEPRESS	46	SQ_FT	34.74513-118.149226
DEPRESS	17	SQ_FT	34.74354-118.149215
DEPRESS	376	SQ_FT	34.74742-118.149213
DEPRESS	126	SQ_FT	34.7448-118.149206
DEPRESS	9	SQ_FT	34.74412-118.149202
DEPRESS	13.00	SQ_FT	34.74358-118.149194
DEPRESS	0.01	ACRE	34.74418-118.149183
DEPRESS	53	SQ_FT	34.74543-118.149178
DEPRESS	23	SQ_FT	$34.7436-118.149163$
DEPRESS	39	SQ_FT	34.74537-118.149148
DEPRESS	139	SQ_FT	$34.7446-118.149141$
DEPRESS	8	SQ_FT	34.74748-118.149136
DEPRESS	99	SQ_FT	34.74737-118.149132
DEPRESS	17	SQ_FT	34.74362-118.149117
DEPRESS	5	SQ_FT	34.74464-118.149099
DEPRESS	28	SQ_FT	34.74487-118.149098
DEPRESS	3	SQ_FT	34.74362-118.149097
DEPRESS	58	SQ_FT	$34.7436-118.149092$
DEPRESS	13	SQ_FT	34.74742-118.149091
DEPRESS	18	SQ_FT	34.74768-118.149088
DEPRESS	391	SQ_FT	34.74522-118.149078
DEPRESS	35	SQ_FT	34.74466-118.149073
DEPRESS	50	SQ_FT	34.74372-118.149072
DEPRESS	25	SQ_FT	34.74362-118.149059
DEPRESS	20	SQ_FT	34.74497-118.149058
DEPRESS	24	SQ_FT	34.74365-118.149044
DEPRESS	18	SQ_FT	$34.7437-118.149035$
DEPRESS	65	SQ_FT	34.74502-118.149031
DEPRESS	26	SQ_FT	34.74368-118.149028
DEPRESS	46.00	SQ_FT	34.74531-118.149014
DEPRESS	0.04	ACRE	34.74766-118.149005
DEPRESS	40	SQ_FT	34.74506-118.148978
DEPRESS	8	SQ_FT	34.74738-118.148962
DEPRESS	23	SQ_FT	34.74472-118.148953
DEPRESS	93	SQ_FT	34.74754-118.148922
DEPRESS	6	SQ_FT	34.74361-118.148907
DEPRESS	16	SQ_FT	34.74782-118.148896
DEPRESS	12	SQ_FT	34.74773-118.148884
DEPRESS	5	SQ_FT	34.7444-118.14888
DEPRESS	14	SQ_FT	34.74454-118.148873
DEPRESS	167	SQ_FT	34.74472-118.148836
DEPRESS	81	SQ_FT	34.74757-118.1488
DEPRESS	12	SQ_FT	34.74749-118.148797
DEPRESS	87	SQ_FT	34.74737-118.148787
DEPRESS	126	SQ_FT	34.74757-118.148784
DEPRESS	16	SQ_FT	34.74452-118.148775
DEPRESS	8	SQ_FT	34.74437-118.148759
DEPRESS	22	SQ_FT	34.74482-118.148759
DEPRESS	17	SQ_FT	34.74449-118.148744
DEPRESS	115	SQ_FT	34.74352-118.148721
DEPRESS	345	SQ_FT	34.74776-118.14871
DEPRESS	126	SQ_FT	34.74747-118.148696
DEPRESS	74	SQ_FT	34.74753-118.148678
DEPRESS	85	SQ_FT	34.74776-118.148654
DEPRESS	17	SQ_FT	34.74734-118.148632
DEPRESS	68	SQ_FT	34.74753-118.14863
DEPRESS	60	SQ_FT	34.74779-118.148616
DEPRESS	19	SQ_FT	34.74734-118.148609
DEPRESS	15	SQ_FT	34.74453-118.148511

CP_2497 PUB	DEPRESS	12	SQ_FT	34.74351-118.148493
CP_2498 PUB	DEPRESS	10	SQ_FT	34.74449-118.14849
CP_2499 PUB	DEPRESS	32	SQ_FT	34.74367-118.148485
CP_2500 PUB	DEPRESS	49	SQ_FT	$34.7437-118.148472$
CP_2501 PUB	DEPRESS	8.00	SQ_FT	34.74346-118.148456
CP_2502 PUB	DEPRESS	0.05	ACRE	34.74356-118.148417
CP_2503 PUB	DEPRESS	56	SQ_FT	34.74378-118.148336
CP_2504 PUB	DEPRESS	20	SQ_FT	34.74377-118.148304
CP_2505 PUB	DEPRESS	62	SQ_FT	34.74374-118.148288
CP_2506 PUB	DEPRESS	8.00	SQ_FT	34.74415-118.148288
CP_2507 PUB	DEPRESS	0.04	ACRE	$34.744-118.148274$
CP_2508 PUB	DEPRESS	0.05	ACRE	34.74359-118.148192
CP_2509 PUB	DEPRESS	23	SQ_FT	34.74306-118.151264
CP_2510 PUB	DEPRESS	15	SQ_FT	34.74313-118.151175
CP_2511 PUB	DEPRESS	14	SQ_FT	34.74315-118.151141
CP_2512 PUB	DEPRESS	26	SQ_FT	34.74322-118.151088
CP_2513 PUB	DEPRESS	7	SQ_FT	34.74319-118.151007
CP_2514 PUB	DEPRESS	8	SQ_FT	$34.7432-118.150996$
CP_2515 PUB	DEPRESS	8	SQ_FT	34.74218-118.150905
CP_2516 PUB	DEPRESS	26	SQ_FT	34.74334-118.150889
CP_2517 PUB	DEPRESS	16	SQ_FT	34.74233-118.150865
CP_2518 PUB	DEPRESS	14	SQ_FT	34.74233-118.15082
CP_2519 PUB	DEPRESS	14	SQ_FT	34.74231-118.150794
CP_2520 PUB	DEPRESS	17	SQ_FT	34.74335-118.150789
CP_2521 PUB	DEPRESS	5	SQ_FT	34.74287-118.15077
CP_2522 PUB	DEPRESS	14	SQ_FT	$34.7423-118.150749$
CP_2523 PUB	DEPRESS	6	SQ_FT	$34.7433-118.150749$
CP_2524 PUB	DEPRESS	10	SQ_FT	34.74226-118.150748
CP_2525 PUB	DEPRESS	37	SQ_FT	34.74291-118.150717
CP_2526 PUB	DEPRESS	5	SQ_FT	34.74177-118.150716
CP_2527 PUB	DEPRESS	12	SQ_FT	34.74283-118.150714
CP_2528 PUB	DEPRESS	8	SQ_FT	34.74279-118.150707
CP_2529 PUB	DEPRESS	76	SQ_FT	34.74286-118.150703
CP_2530 PUB	DEPRESS	15.00	SQ_FT	34.74177-118.150694
CP_2531 PUB	DEPRESS	0.01	ACRE	34.74332-118.150671
CP_2532 PUB	DEPRESS	80	SQ_FT	34.74274-118.150665
CP_2533 PUB	DEPRESS	23	SQ_FT	34.74181-118.150656
CP_2534 PUB	DEPRESS	4	SQ_FT	34.74332-118.150633
CP_2535 PUB	DEPRESS	25	SQ_FT	34.74297-118.15062
CP_2536 PUB	DEPRESS	61	SQ_FT	34.74303-118.150597
CP_2537 PUB	DEPRESS	45	SQ_FT	34.74189-118.150586
CP_2538 PUB	DEPRESS	46	SQ_FT	$34.7415-118.150563$
CP_2539 PUB	DEPRESS	29	SQ_FT	34.74156-118.150562
CP_2540 PUB	DEPRESS	41	SQ_FT	34.74285-118.150531
CP_2541 PUB	DEPRESS	38	SQ_FT	34.74184-118.150526
CP_2542 PUB	DEPRESS	10	SQ_FT	34.74143-118.150524
CP_2543 PUB	DEPRESS	13	SQ_FT	34.74321-118.150501
CP_2544 PUB	DEPRESS	26	SQ_FT	34.74298-118.150496
CP_2545 PUB	DEPRESS	25	SQ_FT	34.74281-118.150487
CP_2546 PUB	DEPRESS		SQ_FT	34.74199-118.150482
CP_2547 PUB	DEPRESS	36	SQ_FT	34.74183-118.150472
CP_2548 PUB	DEPRESS	37	SQ_FT	34.74294-118.150461
CP_2549 PUB	DEPRESS	15	SQ_FT	34.74169-118.150451
CP_2550 PUB	DEPRESS	111	SQ_FT	34.74267-118.150422
CP_2551 PUB	DEPRESS	71	SQ_FT	34.74275-118.15042
CP_2552 PUB	DEPRESS	258	SQ_FT	34.7417-118.150419
CP_2553 PUB	DEPRESS	63	SQ_FT	34.74316-118.15041
CP_2554 PUB	DEPRESS	7	SQ_FT	34.74242-118.15039
CP_2555 PUB	DEPRESS	26	SQ_FT	34.74173-118.150368
CP_2556 PUB	DEPRESS	230	SQ_FT	34.74321-118.150365
CP_2557 PUB	DEPRESS	49	SQ_FT	34.74294-118.150345
CP_2558 PUB	DEPRESS	22	SQ_FT	34.74337-118.150343
CP_2559 PUB	DEPRESS	110	SQ_FT	34.74327-118.150322
CP_2560 PUB	DEPRESS	310.0	SQ_FT	34.74301-118.150294
CP_2561 PUB	DEPRESS	0.1	SQ_FT	34.74175-118.15029
CP_2562 PUB	DEPRESS	145	SQ_FT	34.74173-118.150288

CP_2563 PUB	DEPRESS	33	SQ_FT	34.74238-118.150273
CP_2564 PUB	DEPRESS	33	SQ_FT	34.74272-118.150266
CP_2565 PUB	DEPRESS	115	SQ_FT	34.74245-118.15026
CP_2566 PUB	DEPRESS	32	SQ_FT	34.74271-118.150238
CP_2567 PUB	DEPRESS	- 18.00	SQ_FT	34.74288-118.150236
CP_2568 PUB	DEPRESS	- 0.03	ACRE	34.74184-118.150228
CP_2569 PUB	DEPRESS	9	SQ_FT	34.74329-118.150209
CP_2570 PUB	DEPRESS	29	SQ_FT	34.74283-118.150197
CP_2571 PUB	DEPRESS	14	SQ_FT	34.74307-118.150187
CP_2572 PUB	DEPRESS	63	SQ_FT	34.74286-118.150181
CP_2573 PUB	DEPRESS	29	SQ_FT	34.74202-118.150164
CP_2574 PUB	DEPRESS	14	SQ_FT	34.74138-118.150161
CP_2575 PUB	DEPRESS	15	SQ_FT	34.74308-118.150157
CP_2576 PUB	DEPRESS	26	SQ_FT	34.74286-118.150157
CP_2577 PUB	DEPRESS	131	SQ_FT	34.74198-118.150125
CP_2578 PUB	DEPRESS	57	SQ_FT	34.74247-118.15008
CP_2579 PUB	DEPRESS	- 112	SQ_FT	34.74331-118.150076
CP_2580 PUB	DEPRESS	74	SQ_FT	34.74139-118.150071
CP_2581 PUB	DEPRESS	- 18	SQ_FT	34.74262-118.150062
CP_2582 PUB	DEPRESS	9	SQ_FT	34.74099-118.150057
CP_2583 PUB	DEPRESS	14	SQ_FT	34.74264-118.150053
CP_2584 PUB	DEPRESS	51	SQ_FT	34.74136-118.150045
CP_2585 PUB	DEPRESS	347	SQ_FT	34.74189-118.150044
CP_2586 PUB	DEPRESS	46	SQ_FT	34.74337-118.150026
CP_2587 PUB	DEPRESS	5	SQ_FT	34.74255-118.150016
CP_2588 PUB	DEPRESS	45	SQ_FT	34.74221-118.149994
CP_2589 PUB	DEPRESS	10	SQ_FT	34.74339-118.149988
CP_2590 PUB	DEPRESS	- 113	SQ_FT	34.74105-118.149954
CP_2591 PUB	DEPRESS	272	SQ_FT	34.74217-118.149936
CP_2592-001	PUB	DEPRESS	19.00	SQ_FT 34.74049-118.149921
CP_2592-002	PUB	DEPRESS	0.06	ACRE 34.74049-118.149921
CP_2593 PUB	DEPRESS	S 15	SQ_FT	34.74246-118.149915
CP_2594 PUB	DEPRESS	- 15	SQ_FT	34.74334-118.149909
CP_2595 PUB	DEPRESS	26	SQ_FT	34.74097-118.149895
CP_2596 PUB	DEPRESS	10	SQ_FT	34.74257-118.149868
CP_2597 PUB	DEPRESS	83	SQ_FT	34.74253-118.14986
CP_2598 PUB	DEPRESS	49	SQ_FT	34.74216-118.149856
CP_2599 PUB	DEPRESS	- 17	SQ_FT	34.74218-118.149853
CP_2600 PUB	DEPRESS	S	SQ_FT	34.74249-118.149849
CP_2601 PUB	DEPRESS	6	SQ_FT	34.74247-118.149849
CP_2602 PUB	DEPRESS	6	SQ_FT	34.74214-118.149848
CP_2603 PUB	DEPRESS	19	SQ_FT	$34.7425-118.149844$
CP_2604 PUB	DEPRESS	81	SQ_FT	34.74209-118.149827
CP_2605 PUB	DEPRESS	S	SQ_FT	$34.7425-118.149801$
CP_2606 PUB	DEPRESS	6	SQ_FT	$34.7406-118.14979$
CP_2607 PUB	DEPRESS	30	SQ_FT	$34.7406-118.149765$
CP_2608 PUB	DEPRESS	139	SQ_FT	34.74049-118.149757
CP_2609 PUB	DEPRESS	15	SQ_FT	34.74259-118.149757
CP_2610 PUB	DEPRESS	51	SQ_FT	34.74272-118.149756
CP_2611 PUB	DEPRESS	S6	SQ_FT	34.74187-118.149743
CP_2612 PUB	DEPRESS	S	SQ_FT	$34.7424-118.14972$
CP_2613 PUB	DEPRESS	- 13	SQ_FT	$34.7418-118.149717$
CP_2614 PUB	DEPRESS	- 10	SQ_FT	34.74268-118.149708
CP_2615 PUB	DEPRESS	5	SQ_FT	34.74239-118.149702
CP_2616 PUB	DEPRESS	6	SQ_FT	34.74244-118.149697
CP_2617 PUB	DEPRESS	- 11	SQ_FT	34.74251-118.149694
CP_2618 PUB	DEPRESS	S 35	SQ_FT	$34.7406-118.149686$
CP_2619 PUB	DEPRESS	S 16	SQ_FT	34.74146-118.149685
CP_2620 PUB	DEPRESS	S 166	SQ_FT	34.74172-118.149679
CP_2621 PUB	DEPRESS	- 11	SQ_FT	34.74327-118.149673
CP_2622 PUB	DEPRESS	- 13	SQ_FT	34.74247-118.149671
CP_2623 PUB	DEPRESS	S 31	SQ_FT	34.74177-118.149664
CP_2624 PUB	DEPRESS	S 29	SQ_FT	34.74327-118.149637
CP_2625 PUB	DEPRESS	S9	SQ_FT	34.74209-118.149619
CP_2626 PUB	DEPRESS	S 211	SQ_FT	34.74325-118.149609
CP_2627 PUB	DEPRESS	- 6	SQ_FT	34.7406 -118.14959

CP_2628 PUB	DEPRESS	- 15	SQ_FT	34.73986-118.149566
CP_2629 PUB	DEPRESS	- 38.0	SQ_FT	34.74321-118.149563
CP_2630 PUB	DEPRESS	S 0.1	SQ_FT	34.74322-118.149561
CP_2631 PUB	DEPRESS	15	SQ_FT	34.74015-118.149559
CP_2632 PUB	DEPRESS	57	SQ_FT	34.74179-118.14955
CP_2633 PUB	DEPRESS	21	SQ_FT	34.74054-118.149525
CP_2634 PUB	DEPRESS	13	SQ_FT	34.74326-118.14951
CP_2635 PUB	DEPRESS	11	SQ_FT	34.74062-118.149497
CP_2636 PUB	DEPRESS	4	SQ_FT	34.7406-118.149494
CP_2637 PUB	DEPRESS	37	SQ_FT	34.74333-118.149483
CP_2638 PUB	DEPRESS	- 1	SQ_FT	34.74061-118.149477
CP_2639 PUB	DEPRESS	9	SQ_FT	$34.7406-118.149455$
CP_2640 PUB	DEPRESS	30	SQ_FT	$34.7432-118.149448$
CP_2641 PUB	DEPRESS	40	SQ_FT	34.74337-118.149446
CP_2642 PUB	DEPRESS	23	SQ_FT	34.74344-118.149396
CP_2643 PUB	DEPRESS	131	SQ_FT	34.74339-118.149382
CP_2644 PUB	DEPRESS	- 7	SQ_FT	34.74063-118.149365
CP_2645 PUB	DEPRESS	- 7	SQ_FT	34.74042-118.149353
CP_2646 PUB	DEPRESS	62	SQ_FT	34.74306-118.149351
CP_2647 PUB	DEPRESS	244	SQ_FT	34.74292-118.149348
CP_2648 PUB	DEPRESS	- 7	SQ_FT	34.74062-118.149328
CP_2649 PUB	DEPRESS	15	SQ_FT	34.73995-118.149318
CP_2650 PUB	DEPRESS	10	SQ_FT	34.74061-118.149293
CP_2651 PUB	DEPRESS	5	SQ_FT	34.74063-118.149288
CP_2652 PUB	DEPRESS	12	SQ_FT	34.73968-118.149285
CP_2653 PUB	DEPRESS	47	SQ_FT	34.74157-118.149258
CP_2654 PUB	DEPRESS	12	SQ_FT	34.74199-118.149257
CP_2655 PUB	DEPRESS	19	SQ_FT	34.74058-118.149256
CP_2656 PUB	DEPRESS	10	SQ_FT	34.74061-118.14924
CP_2657 PUB	DEPRESS	20	SQ_FT	34.74333-118.149179
CP_2658 PUB	DEPRESS	- 8	SQ_FT	34.74061-118.149177
CP_2659 PUB	DEPRESS	8	SQ_FT	34.74136-118.149128
CP_2660 PUB	DEPRESS	18	SQ_FT	34.74126-118.149112
CP_2661 PUB	DEPRESS	24	SQ_FT	34.74193-118.149111
CP_2662 PUB	DEPRESS	8	SQ_FT	34.74218-118.149109
CP_2663 PUB	DEPRESS	28	SQ_FT	34.74105-118.149107
CP_2664 PUB	DEPRESS	24	SQ_FT	34.74137-118.149101
CP_2665 PUB	DEPRESS	52	SQ_FT	34.74329-118.14909
CP_2666 PUB	DEPRESS	19	SQ_FT	34.74061-118.149087
CP_2667 PUB	DEPRESS	80	SQ_FT	34.74057-118.14908
CP_2668 PUB	DEPRESS	10	SQ_FT	34.73977-118.149077
CP_2669 PUB	DEPRESS	25	SQ_FT	34.74338-118.149073
CP_2670 PUB	DEPRESS	44	SQ_FT	34.74334-118.149072
CP_2671 PUB	DEPRESS	33	SQ_FT	34.74119-118.14907
CP_2672 PUB	DEPRESS	- 15	SQ_FT	34.74179-118.149065
CP_2673 PUB	DEPRESS	- 9	SQ_FT	34.74122-118.14906
CP_2674 PUB	DEPRESS	113	SQ_FT	34.74132-118.149058
CP_2675-001	PUB	DEPRESS	28	SQ_FT 34.74059-118.149055
CP_2675-002	PUB	DEPRESS	9	SQ_FT 34.74059-118.149055
CP_2676 PUB	DEPRESS	S 21	SQ_FT	34.74192-118.149055
CP_2677 PUB	DEPRESS	30	SQ_FT	34.74129-118.149045
CP_2678 PUB	DEPRESS	134	SQ_FT	34.74126-118.14904
CP_2679 PUB	DEPRESS	- 9	SQ_FT	34.74015-118.149039
CP_2680 PUB	DEPRESS	17	SQ_FT	34.74079-118.149018
CP_2681 PUB	DEPRESS	27	SQ_FT	34.74185-118.149013
CP_2682 PUB	DEPRESS	6	SQ_FT	34.74059-118.148992
CP_2683 PUB	DEPRESS	11	SQ_FT	$34.7421-118.148983$
CP_2684 PUB	DEPRESS	27	SQ_FT	34.73881-118.148982
CP_2685 PUB	DEPRESS	22	SQ_FT	34.74194-118.148951
CP_2686 PUB	DEPRESS	3	SQ_FT	34.74059-118.148949
CP_2687 PUB	DEPRESS	40	SQ_FT	34.74046-118.14894
CP_2688 PUB	DEPRESS	- 4	SQ_FT	34.74061-118.14889
CP_2689 PUB	DEPRESS	- 7	SQ_FT	34.73919-118.148867
CP_2690 PUB	DEPRESS	40	SQ_FT	34.73919-118.148796
CP_2691 PUB	DEPRESS	- 7	SQ_FT	34.74299-118.148738
CP_2692 PUB	DEPRESS	- 8	SQ_FT	34.74281-118.148732

CP_2693 PUB	DEPRESS	126	SQ_FT	34.74291-118.148731
CP_2694 PUB	DEPRESS	19	SQ_FT	34.74282-118.148724
CP_2695 PUB	DEPRESS	23	SQ_FT	34.74304-118.148714
CP_2696 PUB	DEPRESS	16	SQ_FT	34.74128-118.148689
CP_2697 PUB	DEPRESS	67.0	SQ_FT	34.74008-118.148686
CP_2698 PUB	DEPRESS	0.1	SQ_FT	34.73972-118.148685
CP_2699 PUB	DEPRESS	139	SQ_FT	34.73971-118.14868
CP_2700 PUB	DEPRESS	13	SQ_FT	34.74023-118.148676
CP_2701 PUB	DEPRESS	11	SQ_FT	34.74019-118.148675
CP_2702 PUB	DEPRESS	14	SQ_FT	34.73968-118.148661
CP_2703 PUB	DEPRESS	58	SQ_FT	34.74269-118.148608
CP_2704 PUB	DEPRESS	28	SQ_FT	34.74036-118.148489
CP_2705 PUB	DEPRESS	38	SQ_FT	34.74008-118.148426
CP_2706 PUB	DEPRESS	5	SQ_FT	34.73959-118.148363
CP_2707 PUB	DEPRESS	29	SQ_FT	34.74059-118.148286
CP_2708 PUB	DEPRESS	59	SQ_FT	34.74053-118.148219
CP_2709 PUB	DEPRESS	58	SQ_FT	34.74316-118.148213
CP_2710 PUB	DEPRESS	22	SQ_FT	34.74178-118.148145
CP_2711 PUB	DEPRESS	16	SQ_FT	34.74161-118.14812
CP_2712 PUB	DEPRESS	61	SQ_FT	34.74293-118.148073
CP_2713 PUB	DEPRESS	20	SQ_FT	34.73978-118.147962
CP_2714 PUB	DEPRESS	17	SQ_FT	34.74042-118.147905
CP_2715 PUB	DEPRESS	4	SQ_FT	34.74176-118.147871
CP_2716 PUB	DEPRESS	19	SQ_FT	34.73971-118.147841
CP_2717 PUB	DEPRESS	38	SQ_FT	34.74044-118.147839
CP_2718 PUB	DEPRESS	9	SQ_FT	34.74058-118.147818
CP_2719 PUB	DEPRESS	61	SQ_FT	$34.7423-118.147806$
CP_2720 PUB	DEPRESS	19	SQ_FT	34.74233-118.147789
CP_2721 PUB	DEPRESS	7	SQ_FT	34.73844-118.147776
CP_2722 PUB	DEPRESS	7	SQ_FT	34.74049-118.147769
CP_2723 PUB	DEPRESS	11	SQ_FT	34.73882-118.1477
CP_2724 PUB	DEPRESS	25	SQ_FT	34.74197-118.147687
CP_2725 PUB	DEPRESS	5	SQ_FT	34.74172-118.147683
CP_2726 PUB	DEPRESS	16	SQ_FT	34.74023-118.147665
CP_2727 PUB	DEPRESS	19	SQ_FT	$34.7422-118.14763$
CP_2728 PUB	DEPRESS	32	SQ_FT	34.74229-118.147626
CP_2729 PUB	DEPRESS	104	SQ_FT	34.74253-118.147606
CP_2730 PUB	DEPRESS	26	SQ_FT	$34.7422-118.14755$
CP_2731 PUB	DEPRESS	29	SQ_FT	34.74083-118.147545
CP_2732 PUB	DEPRESS	10	SQ_FT	34.74044-118.147511
CP_2733 PUB	DEPRESS	20	SQ_FT	$34.743-118.147484$
CP_2734 PUB	DEPRESS	25	SQ_FT	34.74049-118.147472
CP_2735 PUB	DEPRESS	29	SQ_FT	34.74223-118.147465
CP_2736 PUB	DEPRESS	21	SQ_FT	34.74237-118.14743
CP_2737 PUB	DEPRESS	57	SQ_FT	34.74069-118.147401
CP_2738 PUB	DEPRESS	19	SQ_FT	34.74117-118.147393
CP_2739 PUB	DEPRESS	16	SQ_FT	34.74278-118.14739
CP_2740 PUB	DEPRESS	74	SQ_FT	34.73888-118.147376
CP_2741 PUB	DEPRESS	12	SQ_FT	34.74118-118.14735
CP_2742 PUB	DEPRESS	258	SQ_FT	34.74064-118.147333
CP_2743 PUB	DEPRESS	45	SQ_FT	34.74283-118.147308
CP_2744 PUB	DEPRESS	14	SQ_FT	34.74231-118.147306
CP_2745 PUB	DEPRESS	118	SQ_FT	34.74226-118.147295
CP_2746 PUB	DEPRESS	51	SQ_FT	34.74274-118.147266
CP_2747 PUB	DEPRESS	18	SQ_FT	34.73861-118.147263
CP_2748 PUB	DEPRESS	20	SQ_FT	34.74233-118.147256
CP_2749 PUB	DEPRESS	12	SQ_FT	$34.739-118.147253$
CP_2750 PUB	DEPRESS	30	SQ_FT	34.74297-118.147232
CP_2751 PUB	DEPRESS	122	SQ_FT	34.74082-118.147224
CP_2752 PUB	DEPRESS	4	SQ_FT	34.74023-118.147199
CP_2753 PUB	DEPRESS	31	SQ_FT	34.74027-118.147191
CP_2754 PUB	DEPRESS	27	SQ_FT	34.74034-118.147159
CP_2755 PUB	DEPRESS	16	SQ_FT	34.74023-118.147158
CP_2756 PUB	DEPRESS	29	SQ_FT	34.74023-118.147136
CP_2757 PUB	DEPRESS	20	SQ_FT	34.74055-118.147102
CP_2758 PUB	DEPRESS	92	SQ_FT	34.73565-118.147099

CP_2823-001 CP_2823-002 CP ${ }^{-} 2824$ PUB CP_2825 PUB CP 2826 PUB CP 2827 PUB CP_2828 PUB CP 2829 PUB CP_2830 PUB CP_2831 PUB CP 2832 PUB CP_2833 PUB CP_2834 PUB CP 2835 PUB CP_2836 PUB CP_2837 PUB CP 2838 PUB CP_2839 PUB CP_2840 PUB CP_2841 PUB CP_2842 PUB CP_2843 PUB CP_2844 PUB CP_2845 PUB CP_2846 PUB CP_2847 PUB CP_2848 PUB CP_2849 PUB CP_2850 PUB CP_2851 PUB CP_2852 PUB CP_2853 PUB CP_2854 PUB CP_2855 PUB CP_2856 PUB CP_2857 PUB CP_2858 PUB CP_2859 PUB CP_2860 PUB CP_2861 PUB CP 2862 PUB CP_2863 PUB CP 2864 PUB CP_2865 PUB CP_2866 PUB CP 2867 PUB CP_2868 PUB CP_2869 PUB CP 2870 PUB CP_2871 PUB CP_2872 PUB CP_2873 PUB CP_2874 PUB CP_2875 PUB CP_2876 PUB CP_2877 PUB CP_2878 PUB CP_2879 PUB CP_2880 PUB CP_2881 PUB CP_2882 PUB CP_2883 PUB CP_2884 PUB CP_2885 PUB CP_2886 PUB CP_2887 PUB

PUB	DEPRESS	16.0	SQ_FT 34.73593-118.138732
PUB	DEPRESS	0.2	SQ_FT 34.73593-118.138732
DEPRESS	- 6	SQ_FT	34.73632-118.137869
DEPRESS	2	SQ_FT	34.73634-118.137724
DEPRESS	19	SQ_FT	34.73632-118.137706
DEPRESS	S	SQ FT	34.73633-118.137701
DEPRESS	- 22	SQ_FT	34.73628-118.137701
DEPRESS	- 7	SQ_FT	34.73619-118.137532
DEPRESS	8	SQ_FT	34.73593-118.137371
DEPRESS	-112	SQ_FT	34.73382-118.150849
DEPRESS	- 18	SQ_FT	34.73312-118.150802
DEPRESS	91	SQ_FT	34.73399-118.150776
DEPRESS	S 10	SQ_FT	34.73396-118.150769
DEPRESS	254	SQ_FT	34.73393-118.150761
DEPRESS	- 206.00	SQ_FT	34.73402-118.150721
DEPRESS	- 0.02	ACRE	34.73411-118.150658
DEPRESS	S 40	SQ_FT	34.73271-118.150638
DEPRESS	S 12	SQ_FT	34.73266-118.150629
DEPRESS	- 11	SQ_FT	34.73269-118.150618
DEPRESS	4	SQ_FT	34.73266-118.150608
DEPRESS	- 24	SQ_FT	34.73418-118.15057
DEPRESS	- 28	SQ_FT	$34.7338-118.150567$
DEPRESS	86	SQ_FT	34.73269-118.150546
DEPRESS	- 106	SQ_FT	34.7342-118.150536
DEPRESS	- 13	SQ_FT	34.73273-118.150519
DEPRESS	11	SQ_FT	34.73251-118.150516
DEPRESS	55	SQ_FT	34.73255-118.15051
DEPRESS	S 24	SQ_FT	34.73264-118.150482
DEPRESS	- 17	SQ_FT	34.73249-118.150478
DEPRESS	- 28	SQ_FT	34.73291-118.150469
DEPRESS	S 34	SQ_FT	34.73364-118.150467
DEPRESS	S 80	SQ_FT	34.73406-118.150428
DEPRESS	S 25	SQ_FT	34.73263-118.150381
DEPRESS	- 77	SQ_FT	34.73249-118.150375
DEPRESS	S 53	SQ_FT	34.73406-118.150368
DEPRESS	S 360	SQ_FT	34.73256-118.15036
DEPRESS	21	SQ_FT	34.73262-118.15035
DEPRESS	145	SQ_FT	34.73402-118.150347
DEPRESS	- 10	SQ_FT	34.73262-118.150309
DEPRESS	- 7	SQ_FT	34.73249-118.150299
DEPRESS	39	SQ_FT	$34.7327-118.150285$
DEPRESS	41	SQ_FT	34.73395-118.150282
DEPRESS	- 58	SQ_FT	34.73308-118.150234
DEPRESS	- 70	SQ_FT	34.73368-118.15021
DEPRESS	S 43	SQ_FT	34.73422-118.150161
DEPRESS	63	SQ_FT	$34.734-118.150126$
DEPRESS	S 35	SQ_FT	34.73427-118.150081
DEPRESS	36	SQ_FT	34.73308-118.150056
DEPRESS	S 142	SQ_FT	$34.7342-118.149983$
DEPRESS	208	SQ_FT	34.73429-118.149973
DEPRESS	36	SQ_FT	34.73254-118.149953
DEPRESS	S 36	SQ_FT	$34.7337-118.149944$
DEPRESS	S 53	SQ_FT	34.73416-118.149943
DEPRESS	S 13	SQ_FT	34.73274-118.149905
DEPRESS	-133	SQ_FT	34.73295-118.149898
DEPRESS	S 97	SQ_FT	34.73268-118.149868
DEPRESS	S 37	SQ_FT	34.73296-118.149804
DEPRESS	- 24	SQ_FT	34.73261-118.149789
DEPRESS	- 58	SQ_FT	34.73287-118.149785
DEPRESS	41	SQ_FT	34.73271-118.149754
DEPRESS	- 14	SQ_FT	34.73234-118.149706
DEPRESS	- 72	SQ_FT	34.73419-118.14968
DEPRESS	78	SQ_FT	$34.7327-118.149661$
DEPRESS	- 263.00	SQ_FT	34.73265-118.149554
DEPRESS	- 0.01	ACRE	34.73362-118.14952
DEPRESS	- 226	SQ_FT	34.73393-118.149496

CP_2888 PUB	DEPRESS	- 24	SQ_FT	34.73372-118.149488
CP_2889 PUB	DEPRESS	38	SQ_FT	34.73374-118.149449
CP_2890 PUB	DEPRESS	- 28	SQ_FT	34.73358-118.149431
CP_2891 PUB	DEPRESS	6	SQ_FT	34.73405-118.14939
CP_2892 PUB	DEPRESS	S 32	SQ_FT	$34.734-118.149387$
CP_2893 PUB	DEPRESS	S 43	SQ_FT	34.73421-118.149366
CP_2894 PUB	DEPRESS	48	SQ_FT	34.73268-118.149267
CP_2895 PUB	DEPRESS	- 29	SQ_FT	34.73353-118.149241
CP_2896 PUB	DEPRESS	- 106	SQ_FT	34.73415-118.149183
CP_2897 PUB	DEPRESS	53	SQ_FT	34.73249-118.149161
CP_2898 PUB	DEPRESS	61	SQ_FT	34.73241-118.149108
CP_2899 PUB	DEPRESS	47	SQ_FT	$34.7324-118.149013$
CP_2900 PUB	DEPRESS	- 89	SQ_FT	34.73279-118.148874
CP_2901 PUB	DEPRESS	- 33.00	SQ_FT	34.73226-118.148817
CP_2902 PUB	DEPRESS	- 0.06	ACRE	34.73266-118.148743
CP_2903 PUB	DEPRESS	- 15	SQ_FT	34.73362-118.148712
CP_2904 PUB	DEPRESS	- 28	SQ_FT	34.73363-118.148693
CP_2905 PUB	DEPRESS	S 21	SQ_FT	34.73366-118.148666
CP_2906-001	PUB	DEPRESS	77	SQ_FT 34.73409-118.148589
CP_2906-002	PUB	DEPRESS	5	SQ_FT 34.73409-118.148589
CP_2907 PUB	DEPRESS	5	SQ_FT	34.73397-118.148585
CP_2908 PUB	DEPRESS	33	SQ_FT	34.73382-118.148582
CP_2909 PUB	DEPRESS	9	SQ_FT	34.73407-118.148573
CP_2910 PUB	DEPRESS	21	SQ_FT	$34.734-118.148566$
CP_2911 PUB	DEPRESS	59	SQ_FT	34.73355-118.148564
CP_2912 PUB	DEPRESS	- 28	SQ_FT	34.73396-118.148562
CP_2913 PUB	DEPRESS	- 26	SQ_FT	34.73351-118.14856
CP_2914 PUB	DEPRESS	- 179	SQ_FT	34.73246-118.148449
CP_2915 PUB	DEPRESS	130	SQ_FT	34.73295-118.148448
CP_2916 PUB	DEPRESS	385	SQ_FT	34.73227-118.148444
CP_2917 PUB	DEPRESS	40	SQ_FT	34.73228-118.14829
CP_2918 PUB	DEPRESS	S 69	SQ_FT	34.73223-118.148288
CP_2919 PUB	DEPRESS	248	SQ_FT	34.73235-118.148272
CP_2920 PUB	DEPRESS	- 99	SQ_FT	34.73239-118.148225
CP_2921 PUB	DEPRESS	S 34	SQ_FT	34.73255-118.147843
CP_2922 PUB	DEPRESS	- 84	SQ_FT	34.73256-118.147775
CP_2923 PUB	DEPRESS	142	SQ_FT	34.73269-118.147746
CP_2924 PUB	DEPRESS	6	SQ_FT	34.73262-118.147732
CP_2925 PUB	DEPRESS	36	SQ_FT	34.73258-118.147725
CP_2926 PUB	DEPRESS	- 52	SQ_FT	$34.733-118.147712$
CP_2927 PUB	DEPRESS	43	SQ_FT	34.73288-118.147643
CP_2928 PUB	DEPRESS	11	SQ_FT	34.73325-118.147563
CP_2929 PUB	DEPRESS	S	SQ_FT	34.73325-118.147527
CP_2930 PUB	DEPRESS	S	SQ_FT	34.73326-118.147504
CP_2931 PUB	DEPRESS	- 119	SQ_FT	34.73157-118.147412
CP_2932 PUB	DEPRESS	80	SQ_FT	34.73144-118.147309
CP_2933 PUB	DEPRESS	- 114	SQ_FT	34.73241-118.147295
CP_2934 PUB	DEPRESS	91	SQ_FT	34.73255-118.147203
CP_2935 PUB	DEPRESS	-121	SQ_FT	34.73308-118.147116
CP_2936 PUB	DEPRESS	117	SQ_FT	34.73104-118.146985
CP_2937 PUB	DEPRESS	86	SQ_FT	34.73327-118.14687
CP_2938 PUB	DEPRESS	- 17	SQ_FT	34.73476-118.146577
CP_2939 PUB	DEPRESS	9	SQ_FT	34.73474-118.146568
CP_2940 PUB	DEPRESS	140	SQ_FT	34.73521-118.146542
CP_2941 PUB	DEPRESS	- 70	SQ_FT	34.73447-118.146427
CP_2942 PUB	DEPRESS	- 71	SQ_FT	34.73431-118.146335
CP_2943 PUB	DEPRESS	86	SQ_FT	34.73499-118.146136
CP_2944 PUB	DEPRESS	4	SQ_FT	34.73491-118.146005
CP_2945 PUB	DEPRESS	10	SQ_FT	34.73492-118.145987
CP_2946 PUB	DEPRESS	262	SQ_FT	34.73316-118.145974
CP_2947 PUB	DEPRESS	165	SQ_FT	34.73354-118.145941
PD_2948 PUB	DEPRESS	- 79	SQ_FT	34.73537-118.145912
PD_2949 PUB	DEPRESS	10	SQ_FT	34.73501-118.145887
PD_2950 PUB	DEPRESS	12	SQ_FT	34.73513-118.145876
PD_2951 PUB	DEPRESS	56	SQ_FT	$34.7353-118.145876$
PD_2952 PUB	DEPRESS	- 14	SQ_FT	34.73523-118.145873

CP_2953 PUB	DEPRESS	- 186	SQ_FT	34.73467-118.145872
PD_2954 PUB	DEPRESS	-107	SQ_FT	$34.7349-118.145871$
PD_2955 PUB	DEPRESS	116	SQ_FT	34.73517-118.145868
PD_2956 PUB	DEPRESS	92	SQ_FT	$34.7348-118.145838$
PD_2957 PUB	DEPRESS	- 7	SQ_FT	34.73522-118.145836
PD 2958 PUB	DEPRESS	6	SQ FT	34.73512-118.145788
PD_2959 PUB	DEPRESS		SQ_FT	34.73481-118.145781
PD_2960 PUB	DEPRESS	10	SQ_FT	34.73507-118.145767
PD_2961 PUB	DEPRESS	- 52	SQ_FT	34.73502-118.145764
PD_2962 PUB	DEPRESS	45	SQ_FT	34.73503-118.145751
PD_2963 PUB	DEPRESS	4	SQ_FT	34.73498-118.145739
PD_2964 PUB	DEPRESS	8	SQ_FT	34.73496-118.145731
PD_2965 PUB	DEPRESS	44	SQ_FT	34.73484-118.145711
CP_2966 PUB	DEPRESS	11	SQ_FT	34.73314-118.145675
CP_2967-001	PUB D	DEPRESS	6.00	SQ_FT 34.73467-118.14566
CP_2967-002	PUB D	DEPRESS	0.03	ACRE 34.73467-118.14566
CP_2968 PUB	DEPRESS	- 9	SQ_FT	$34.73461-118.145576$
CP_2969 PUB	DEPRESS	68	SQ_FT	34.72786-118.145526
CP_2970 PUB	DEPRESS	2	SQ_FT	$34.7346-118.1455$
CP_2971 PUB	DEPRESS	31	SQ_FT	34.73459-118.145477
PD_2972 PUB	DEPRESS	34	SQ_FT	34.73477-118.145475
PD_2973 PUB	DEPRESS	20	SQ_FT	34.73481-118.145465
PD_2974 PUB	DEPRESS	18	SQ_FT	34.73479-118.145444
CP_2975 PUB	DEPRESS	6	SQ_FT	34.73318-118.145401
CP_2976 PUB	DEPRESS	12	SQ_FT	34.73457-118.145386
CP_2977 PUB	DEPRESS	38	SQ_FT	34.72831-118.145351
PD_2978 PUB	DEPRESS	12	SQ_FT	34.73483-118.145339
CP_2979 PUB	DEPRESS	7	SQ_FT	34.73456-118.145327
CP_2980 PUB	DEPRESS	49	SQ_FT	34.72834-118.145314
CP_2981-001	PUB D	DEPRESS	40	SQ_FT 34.73454-118.145245
CP_2981-002	PUB D	DEPRESS	13	SQ_FT 34.73454-118.145245
CP_2982 PUB	DEPRESS	- 24	SQ_FT	34.72836-118.145244
PD_2983 PUB	DEPRESS	- 65	SQ_FT	34.73484-118.145158
PD_2984 PUB	DEPRESS	21	SQ_FT	34.73483-118.145096
PD_2985 PUB	DEPRESS	S 381.00	SQ_FT	34.73481-118.144959
CP_2986 PUB	DEPRESS	- 0.01	ACRE	34.73464-118.144952
CP_2987 PUB	DEPRESS	5	SQ_FT	34.72886-118.144872
PD_2988 PUB	DEPRESS	12	SQ_FT	34.73536-118.144869
CP_2989 PUB	DEPRESS	- 7	SQ_FT	$34.7336-118.144819$
CP_2990 PUB	DEPRESS	88	SQ_FT	34.73238-118.144733
CP_2991 PUB	DEPRESS	S 21.00	SQ_FT	34.73453-118.144717
CP_2992 PUB	DEPRESS	- 0.02	ACRE	$34.7337-118.144712$
CP_2993 PUB	DEPRESS	- 63	SQ_FT	34.73451-118.144689
PD_2994 PUB	DEPRESS	56	SQ_FT	34.73482-118.144672
CP_2995 PUB	DEPRESS	21	SQ_FT	34.73401-118.144613
CP_2996 PUB	DEPRESS	- 3	SQ_FT	34.73383-118.144595
CP_2997 PUB	DEPRESS	7	SQ_FT	34.73401-118.144595
CP_2998 PUB	DEPRESS	352	SQ_FT	34.73379-118.144592
CP_2999 PUB	DEPRESS	S 33	SQ_FT	34.73388-118.14459
PD_3000 PUB	DEPRESS	479	SQ_FT	34.7349 -118.144588
CP_3001 PUB	DEPRESS	- 7	SQ_FT	34.73394-118.144583
CP_3002 PUB	DEPRESS	6	SQ_FT	34.73399-118.14458
CP_3003 PUB	DEPRESS	- 7	SQ_FT	34.73396-118.144579
CP_3004 PUB	DEPRESS	- 3	SQ_FT	34.73409-118.144576
CP_3005 PUB	DEPRESS	6	SQ_FT	34.73426-118.144573
CP_3006 PUB	DEPRESS	3	SQ_FT	34.73387-118.144573
CP_3007-001	PUB D	DEPRESS	16	SQ_FT 34.73404-118.144572
CP_3007-002	PUB D	DEPRESS	63	SQ_FT 34.73404-118.144572
CP_3008 PUB	DEPRESS	- 10	SQ_FT	34.73433-118.14457
CP_3009 PUB	DEPRESS	- 7	SQ_FT	34.73394-118.14457
CP_3010 PUB	DEPRESS	2	SQ_FT	34.73437-118.144569
CP_3011 PUB	DEPRESS	- 3	SQ_FT	34.73438-118.144567
CP_3012 PUB	DEPRESS	- 7	SQ_FT	34.73403-118.144561
CP_3013 PUB	DEPRESS	- 8	SQ_FT	34.73426-118.144559
CP_3014 PUB	DEPRESS	9	SQ_FT	34.73408-118.144558
CP_3015 PUB	DEPRESS	15	SQ_FT	34.73428-118.144554

CP_3016 PUB	DEPRESS	S	SQ_FT	$34.7343-118.144553$
CP_3017-001	PUB D	DEPRESS	23	SQ_FT 34.73436-118.144552
CP_3017-002	PUB D	DEPRESS	1	SQ_FT 34.73436-118.144552
CP_3018 PUB	DEPRESS	S 20	SQ_FT	34.73457-118.144545
CP_3019 PUB	DEPRESS	6	SQ_FT	34.73439-118.14454
CP_3020 PUB	DEPRESS	13	SQ_FT	34.73257-118.144526
CP_3021 PUB	DEPRESS	-19	SQ_FT	34.73258-118.144489
PD_3022 PUB	DEPRESS	178	SQ_FT	34.73477-118.144487
CP_3023 PUB	DEPRESS	- 160	SQ_FT	34.73279-118.144484
PD_3024 PUB	DEPRESS	256	SQ_FT	34.73524-118.144473
CP_3025 PUB	DEPRESS	4	SQ_FT	34.73278-118.14442
CP_3026 PUB	DEPRESS	2	SQ_FT	34.73201-118.14441
PD_3027 PUB	DEPRESS	222	SQ_FT	34.73505-118.144401
CP_3028 PUB	DEPRESS	4	SQ_FT	34.73201-118.144371
CP_3029 PUB	DEPRESS	28	SQ_FT	34.73193-118.144356
CP_3030 PUB	DEPRESS	20	SQ_FT	34.73151-118.144338
CP_3031 PUB	DEPRESS	- 10	SQ_FT	34.73155-118.14424
CP_3032 PUB	DEPRESS	37	SQ_FT	34.73256-118.144239
CP_3033 PUB	DEPRESS	11	SQ_FT	34.73154-118.144223
CP_3034 PUB	DEPRESS	11	SQ_FT	34.73151-118.144205
CP_3035 PUB	DEPRESS	23	SQ_FT	34.72977-118.144202
CP_3036 PUB	DEPRESS	175	SQ_FT	$34.7297-118.144193$
CP_3037 PUB	DEPRESS	27	SQ_FT	34.72936-118.144164
CP_3038 PUB	DEPRESS	- 3	SQ_FT	34.72934-118.144156
CP_3039 PUB	DEPRESS	19	SQ_FT	34.73127-118.144151
CP_3040 PUB	DEPRESS	11	SQ_FT	34.72935-118.144146
CP_3041 PUB	DEPRESS	13	SQ_FT	34.72873-118.144142
CP_3042 PUB	DEPRESS	S	SQ_FT	34.72876-118.14414
CP_3043 PUB	DEPRESS	62	SQ_FT	34.72866-118.144139
CP_3044 PUB	DEPRESS	172	SQ_FT	34.72837-118.144134
CP_3045 PUB	DEPRESS	10	SQ_FT	34.72859-118.144129
CP_3046 PUB	DEPRESS	29	SQ_FT	34.72755-118.144126
CP_3047 PUB	DEPRESS	494	SQ_FT	34.72806-118.144125
CP_3048 PUB	DEPRESS	51	SQ_FT	34.72783-118.144125
CP_3049 PUB	DEPRESS	25	SQ_FT	34.73099-118.144121
CP_3050 PUB	DEPRESS	S	SQ_FT	34.72778-118.144116
CP_3051 PUB	DEPRESS	12	SQ_FT	$34.7278-118.144115$
CP_3052 PUB	DEPRESS	13	SQ_FT	34.72768-118.144112
CP_3053 PUB	DEPRESS	84	SQ_FT	34.72856-118.144109
CP_3054 PUB	DEPRESS	10	SQ_FT	34.72761-118.144106
CP_3055 PUB	DEPRESS	3	SQ_FT	34.72783-118.144102
CP_3056 PUB	DEPRESS	- 159	SQ_FT	34.73449-118.143982
CP_3057 PUB	DEPRESS	18	SQ_FT	34.73461-118.143959
CP_3058 PUB	DEPRESS	59	SQ_FT	34.73452-118.14388
CP_3059 PUB	DEPRESS	19	SQ_FT	34.73297-118.143864
CP_3060 PUB	DEPRESS	S	SQ_FT	34.73232-118.143858
CP_3061 PUB	DEPRESS	13	SQ_FT	$34.7328-118.143853$
CP_3062 PUB	DEPRESS	70	SQ_FT	34.73454-118.143814
CP_3063 PUB	DEPRESS	4	SQ_FT	34.73241-118.143773
PD_3064 PUB	DEPRESS	183	SQ_FT	34.73487-118.143736
CP_3065 PUB	DEPRESS	95	SQ_FT	34.73462-118.143732
PD_3066 PUB	DEPRESS	23	SQ_FT	34.73537-118.143697
CP_3067 PUB	DEPRESS	- 12	SQ_FT	34.73168-118.143696
CP_3068 PUB	DEPRESS	S3	SQ_FT	34.73172-118.143693
PD_3069 PUB	DEPRESS	- 28	SQ_FT	34.73543-118.143657
CP_3070 PUB	DEPRESS	26	SQ_FT	34.73208-118.143649
PD_3071 PUB	DEPRESS	- 11	SQ_FT	34.73487-118.143622
CP_3072 PUB	DEPRESS	93	SQ_FT	34.73177-118.143618
CP_3073 PUB	DEPRESS	- 182	SQ_FT	34.73165-118.143565
CP_3074 PUB	DEPRESS	70	SQ_FT	$34.7316-118.143529$
PD_3075 PUB	DEPRESS	31	SQ_FT	34.73487-118.14351
CP_3076 PUB	DEPRESS	6	SQ_FT	34.73207-118.143491
CP_3077 PUB	DEPRESS	31	SQ_FT	$34.7345-118.143487$
CP_3078 PUB	DEPRESS	143	SQ_FT	34.72937-118.143415
PD_3079 PUB	DEPRESS	- 13	SQ_FT	34.73544-118.14336
PD_3080 PUB	DEPRESS	- 9	SQ_FT	34.73482-118.143356

CP_3081 PUB	DEPRESS	85	SQ_FT	34.72995-118.143335
CP_3082 PUB	DEPRESS	74	SQ_FT	34.72938-118.143292
CP_3083 PUB	DEPRESS	244	SQ_FT	34.73456-118.143291
CP_3084 PUB	DEPRESS	55	SQ_FT	$34.7346-118.143246$
CP_3085 PUB	DEPRESS	185	SQ_FT	34.72947-118.143142
PD_3086 PUB	DEPRESS	16	SQ_FT	34.73548-118.143102
CP_3087 PUB	DEPRESS	78.00	SQ_FT	34.73456-118.143029
CP_3088 PUB	DEPRESS	0.11	ACRE	34.73144-118.142909
CP_3089 PUB	DEPRESS	342	SQ_FT	$34.7346-118.142897$
CP_3090 PUB	DEPRESS	14	SQ_FT	34.73132-118.142787
PD_3091 PUB	DEPRESS	9	SQ_FT	34.73529-118.142782
CP_3092 PUB	DEPRESS	480	SQ_FT	34.73453-118.14278
PD_3093 PUB	DEPRESS	10	SQ_FT	34.73525-118.142776
PD_3094 PUB	DEPRESS	4	SQ_FT	34.73521-118.142773
PD_3095 PUB	DEPRESS	3	SQ_FT	34.73521-118.142762
CP_3096 PUB	DEPRESS	57	SQ_FT	34.73472-118.14271
CP_3097 PUB	DEPRESS	465	SQ_FT	34.73414-118.14267
CP_3098 PUB	DEPRESS	356.00	SQ_FT	34.73427-118.142631
CP_3099 PUB	DEPRESS	0.03	ACRE	34.73201-118.142284
CP_3100 PUB	DEPRESS	50	SQ_FT	34.73464-118.142047
CP_3101 PUB	DEPRESS	55	SQ_FT	34.73519-118.141993
CP_3102 PUB	DEPRESS	110	SQ_FT	34.73394-118.141969
CP_3103 PUB	DEPRESS	154	SQ_FT	34.73386-118.14195
CP_3104 PUB	DEPRESS	61	SQ_FT	34.73547-118.141949
CP_3105 PUB	DEPRESS	78	SQ_FT	34.73538-118.141924
CP_3106 PUB	DEPRESS	115	SQ_FT	34.73424-118.141836
CP_3107 PUB	DEPRESS	392	SQ_FT	34.73539-118.141813
CP_3108 PUB	DEPRESS	79	SQ_FT	34.73511-118.141768
CP_3109 PUB	DEPRESS	74	SQ_FT	34.73447-118.141756
CP_3110 PUB	DEPRESS	74	SQ_FT	34.73355-118.141597
CP_3111 PUB	DEPRESS	183	SQ_FT	$34.7354-118.141383$
CP_3112 PUB	DEPRESS	15	SQ_FT	34.73068-118.14128
CP_3113 PUB	DEPRESS	74	SQ_FT	34.72944-118.14123
CP_3114 PUB	DEPRESS	45	SQ_FT	34.72915-118.141177
CP_3115 PUB	DEPRESS	167	SQ_FT	34.72982-118.141149
CP_3116 PUB	DEPRESS	31	SQ_FT	34.72974-118.141135
CP_3117 PUB	DEPRESS	21	SQ_FT	34.73003-118.141089
CP_3118 PUB	DEPRESS	89	SQ_FT	34.72846-118.141074
CP_3119 PUB	DEPRESS	25	SQ_FT	34.73015-118.141071
CP_3120 PUB	DEPRESS	18	SQ_FT	34.72934-118.141067
CP_3121 PUB	DEPRESS	6	SQ_FT	34.72926-118.141053
CP_3122 PUB	DEPRESS	3	SQ_FT	34.72924-118.141052
CP_3123 PUB	DEPRESS	40	SQ_FT	34.73007-118.14105
CP_3124 PUB	DEPRESS	5	SQ_FT	34.72922-118.14104
CP_3125 PUB	DEPRESS	23	SQ_FT	34.72999-118.141038
CP_3126 PUB	DEPRESS	86	SQ_FT	34.73118-118.141017
CP_3127 PUB	DEPRESS	30	SQ_FT	34.72992-118.141009
CP_3128 PUB	DEPRESS	92	SQ_FT	34.7296-118.140996
CP_3129 PUB	DEPRESS	22	SQ_FT	34.72992-118.140979
CP_3130 PUB	DEPRESS	186	SQ_FT	34.72953-118.140944
CP_3131 PUB	DEPRESS	32	SQ_FT	34.7276-118.14093
CP_3132 PUB	DEPRESS	83	SQ_FT	34.72853-118.140929
CP_3133 PUB	DEPRESS	117.00	SQ_FT	34.72961-118.1409
CP_3134 PUB	DEPRESS	0.02	ACRE	34.73041-118.140888
CP_3135 PUB	DEPRESS	391	SQ_FT	$34.7305-118.140858$
CP_3136 PUB	DEPRESS	82	SQ_FT	34.73068-118.140828
CP_3137 PUB	DEPRESS	72	SQ_FT	34.72977-118.140737
CP_3138 PUB	DEPRESS	6	SQ_FT	34.72842-118.140725
CP_3139 PUB	DEPRESS	8	SQ_FT	34.73013-118.14066
CP_3140 PUB	DEPRESS	21	SQ_FT	34.72832-118.140659
CP_3141 PUB	DEPRESS	16	SQ_FT	34.72788-118.140597
CP_3142 PUB	DEPRESS	15	SQ_FT	$34.73-118.140564$
CP_3143 PUB	DEPRESS	36	SQ_FT	34.72947-118.140539
CP_3144 PUB	DEPRESS	65	SQ_FT	34.72966-118.140508
CP_3145 PUB	DEPRESS	38	SQ_FT	34.72994-118.1405
CP_3146 PUB	DEPRESS	2	SQ_FT	34.7289 -118.140498

CP_3147 PUB	DEPRESS	18	SQ_FT	34.72923-118.140494
CP_3148 PUB	DEPRESS	77	SQ_FT	34.72891-118.140484
CP_3149 PUB	DEPRESS	20	SQ_FT	34.72887-118.140453
CP_3150 PUB	DEPRESS	24	SQ_FT	34.72853-118.140409
CP_3151 PUB	DEPRESS	16	SQ_FT	34.72863-118.140404
CP_3152 PUB	DEPRESS	53	SQ_FT	34.73006-118.14038
CP_3153 PUB	DEPRESS	7	SQ_FT	34.72885-118.140374
CP_3154 PUB	DEPRESS	102	SQ_FT	34.72986-118.140372
CP_3155 PUB	DEPRESS	24	SQ_FT	34.72839-118.14037
CP_3156 PUB	DEPRESS	70	SQ_FT	34.72899-118.140359
CP_3157 PUB	DEPRESS	22	SQ_FT	34.72914-118.140341
CP_3158 PUB	DEPRESS	22	SQ_FT	34.72947-118.140337
CP_3159 PUB	DEPRESS	193	SQ_FT	34.72891-118.140336
CP_3160 PUB	DEPRESS	55	SQ_FT	34.72942-118.140309
CP_3161 PUB	DEPRESS	82	SQ_FT	34.72842-118.140294
CP_3162 PUB	DEPRESS	33.0	SQ_FT	34.72945-118.140291
CP_3163 PUB	DEPRESS	0.1	SQ_FT	34.72948-118.140257
CP_3164 PUB	DEPRESS	18	SQ_FT	34.72949-118.140255
CP_3165 PUB	DEPRESS	19	SQ_FT	34.72889-118.140211
CP_3166 PUB	DEPRESS	35	SQ_FT	34.72833-118.140185
CP_3167 PUB	DEPRESS	28	SQ_FT	34.72767-118.140181
CP_3168 PUB	DEPRESS	24	SQ_FT	34.72967-118.140181
CP_3169 PUB	DEPRESS	14	SQ_FT	34.72833-118.140165
CP_3170 PUB	DEPRESS	43	SQ_FT	34.72828-118.140161
CP_3171 PUB	DEPRESS	48	SQ_FT	34.72813-118.140104
CP_3172 PUB	DEPRESS	19	SQ_FT	34.72755-118.140099
CP_3173 PUB	DEPRESS	11	SQ_FT	34.72944-118.140094
CP_3174 PUB	DEPRESS	40	SQ_FT	34.72834-118.14008
CP_3175 PUB	DEPRESS	16	SQ_FT	34.72818-118.140026
CP_3176 PUB	DEPRESS	24	SQ_FT	34.72811-118.14002
CP_3177 PUB	DEPRESS	15	SQ_FT	34.72861-118.140006
CP_3178 PUB	DEPRESS	27	SQ_FT	34.72852-118.139936
CP_3179 PUB	DEPRESS	27	SQ_FT	34.7277 -118.139929
CP_3180 PUB	DEPRESS	47	SQ_FT	34.72761-118.13978
CP_3181 PUB	DEPRESS	43	SQ_FT	34.73297-118.139455
PD_3182 PUB	DEPRESS	383.00	SQ_FT	34.73308-118.13914
PD_3183 PUB	DEPRESS	0.02	ACRE	$34.7333-118.138341$
PD_3184 PUB	DEPRESS	313	SQ_FT	34.73346-118.138108
CP_3185-001	PUB		48	SQ_FT 34.73428-118.13655
CP_3185-002	PUB		277	SQ_FT 34.73428-118.13655
PD_3186 PUB	DEPRESS	117	SQ_FT	34.73375-118.135508
PD_3187 PUB	DEPRESS	44	SQ_FT	34.73259-118.135361
PD_3188 PUB	DEPRESS	106	SQ_FT	34.73258-118.135272
PD_3189 PUB	DEPRESS	263.00	SQ_FT	34.73354-118.13456
PD_3190 PUB	DEPRESS	0.93	ACRE	34.73298-118.134494
CP_3191 PUB	DEPRESS	13	SQ_FT	34.73408-118.133999
CP_3192 PUB	DEPRESS	20	SQ_FT	34.72568-118.144758
CP_3193 PUB	DEPRESS	45	SQ_FT	34.72581-118.144694
CP_3194 PUB	DEPRESS	16	SQ_FT	34.72583-118.144571
CP_3195 PUB	DEPRESS	24	SQ_FT	34.72584-118.144457
CP_3196 PUB	DEPRESS	19	SQ_FT	34.72563-118.144323
CP_3197 PUB	DEPRESS	6	SQ_FT	34.72582-118.144237
CP_3198 PUB	DEPRESS	77	SQ_FT	34.72574-118.144181
CP_3199 PUB	DEPRESS	6	SQ_FT	34.72725-118.144124
CP_3200 PUB	DEPRESS	7	SQ_FT	34.72739-118.144123
CP_3201 PUB	DEPRESS	23	SQ_FT	$34.7273-118.144123$
CP_3202 PUB	DEPRESS	7	SQ_FT	34.72612-118.144114
CP_3203 PUB	DEPRESS	4	SQ_FT	34.72615-118.144114
CP_3204 PUB	DEPRESS	16	SQ_FT	34.72604-118.144113
CP_3205 PUB	DEPRESS	5	SQ_FT	34.72672-118.144113
CP_3206 PUB	DEPRESS	13	SQ_FT	$34.7261-118.144112$
CP_3207 PUB	DEPRESS	40	SQ_FT	34.72652-118.144111
CP_3208 PUB	DEPRESS	5	SQ_FT	34.72658-118.14411
CP_3209 PUB	DEPRESS	6	SQ_FT	34.72639-118.14411
CP_3210 PUB	DEPRESS	19	SQ_FT	34.72608-118.144099
CP_3211 PUB	DEPRESS	7	SQ_FT	34.72685-118.144099

CP_3212 PUB	DEPRESS	S	SQ_FT	34.72651-118.144096
CP_3213 PUB	DEPRESS	4	SQ_FT	34.72626-118.144095
CP_3214 PUB	DEPRESS	- 7	SQ_FT	34.72642-118.144094
CP_3215 PUB	DEPRESS	S 10	SQ_FT	34.72583-118.144086
CP_3216 PUB	DEPRESS	-18	SQ_FT	34.72573-118.144085
CP_3217 PUB	DEPRESS	17	SQ_FT	34.72559-118.144058
CP_3218 PUB	DEPRESS	- 11	SQ_FT	34.72556-118.144044
CP_3219 PUB	DEPRESS	S 30	SQ_FT	34.72552-118.14389
CP_3220 PUB	DEPRESS	S 123	SQ_FT	34.72357-118.143484
CP_3221 PUB	DEPRESS	S 23	SQ_FT	34.72626-118.143303
CP_3222 PUB	DEPRESS	S 27	SQ_FT	34.72622-118.143297
CP_3223 PUB	DEPRESS	S 368	SQ_FT	34.72352-118.143283
CP_3224 PUB	DEPRESS	S $\quad 79.00$	SQ_FT	34.7268-118.143088
CP_3225 PUB	DEPRESS	S 0.01	ACRE	34.72374-118.143008
CP_3226 PUB	DEPRESS	S 48.00	SQ_FT	34.72533-118.142984
CP_3227 PUB	DEPRESS	- 0.01	ACRE	34.72347-118.142769
CP_3228 PUB	DEPRESS	S 476	SQ_FT	34.72331-118.142653
CP_3229 PUB	DEPRESS	S 15.00	SQ_FT	34.72401-118.142543
PD_3230 PUB	DEPRESS	- 0.02	ACRE	34.72095-118.142388
CP_3231 PUB	DEPRESS	S 12	SQ_FT	34.72251-118.142273
CP_3232 PUB	DEPRESS	S 49	SQ_FT	34.72728-118.142186
PD_3233 PUB	DEPRESS	S 59	SQ_FT	34.72107-118.142041
CP_3234 PUB	DEPRESS	S 69	SQ_FT	34.72304-118.141946
CP_3235 PUB	DEPRESS	27	SQ_FT	34.72618-118.140706
CP_3236 PUB	DEPRESS	析	SQ_FT	34.72611-118.140693
CP_3237 PUB	DEPRESS	S 30.00	SQ_FT	34.72602-118.140679
CP_3238 PUB	DEPRESS	- 0.02	ACRE	34.72414-118.140615
CP_3239 PUB	DEPRESS	S22	SQ_FT	34.72451-118.140577
CP_3240 PUB	DEPRESS	S 36	SQ_FT	34.72696-118.140045
CP_3241 PUB	DEPRESS	S 19	SQ_FT	34.72701-118.139961
CP_3242 PUB	DEPRESS	- 26	SQ_FT	34.72628-118.139908
CP_3243 PUB	DEPRESS	S 26	SQ_FT	34.72625-118.139905
CP_3244 PUB	DEPRESS	- 5	SQ_FT	34.72621-118.139891
CP_3245 PUB	DEPRESS	S 13	SQ_FT	34.72751-118.139886
CP_3246-001	PUB D	DEPRESS	39	SQ_FT 34.72634-118.139882
CP_3246-002	PUB D	DEPRESS	59	SQ_FT 34.72634-118.139882
CP_3247 PUB	DEPRESS	S 52	SQ_FT	34.72673-118.139839
CP_3248 PUB	DEPRESS	S 63	SQ_FT	34.72682-118.139839
CP_3249 PUB	DEPRESS	- 22	SQ_FT	34.72473-118.139807
CP_3250 PUB	DEPRESS	S 24	SQ_FT	34.72623-118.139687
CP_3251-001	PUB D	DEPRESS	33	SQ_FT 34.72625-118.139675
CP_3251-002	PUB D	DEPRESS	20	SQ_FT 34.72625-118.139675
CP_3252 PUB	DEPRESS	- 73	SQ_FT	34.72629-118.139672
CP_3253 PUB	DEPRESS	S 38	SQ_FT	34.72619-118.139625
CP_3254 PUB	DEPRESS	S 40	SQ_FT	34.72653-118.139614
CP_3255 PUB	DEPRESS	S 38	SQ_FT	$34.7238-118.139592$
CP_3256 PUB	DEPRESS	S 473	SQ_FT	34.72395-118.139544
CP_3257 PUB	DEPRESS	- 61	SQ_FT	34.72617-118.139419
CP_3258 PUB	DEPRESS	S 236	SQ_FT	34.72048-118.139379
CP_3259 PUB	DEPRESS	S 115	SQ_FT	34.72274-118.139302
CP_3260 PUB	DEPRESS	38	SQ_FT	34.72131-118.13929
CP_3261 PUB	DEPRESS	S 160	SQ_FT	34.72032-118.139267
CP_3262 PUB	DEPRESS	61	SQ_FT	34.72123-118.139137
CP_3263 PUB	DEPRESS	S 52	SQ_FT	34.72253-118.139122
CP_3264 PUB	DEPRESS	S 13	SQ_FT	34.72251-118.139028
CP_3265 PUB	DEPRESS	S 104	SQ_FT	34.72244-118.138986
CP_3266 PUB	DEPRESS	S 53.00	SQ_FT	34.72044-118.138963
CP_3267 PUB	DEPRESS	- 0.01	ACRE	34.72314-118.138865
CP_3268 PUB	DEPRESS	S 37	SQ_FT	34.72169-118.138836
CP_3269 PUB	DEPRESS	S 107	SQ_FT	34.72304-118.13883
CP_3270 PUB	DEPRESS	S 50	SQ_FT	34.7208-118.13873
CP_3271 PUB	DEPRESS	S 14	SQ_FT	34.72257-118.138515
CP_3272 PUB	DEPRESS	S 39.00	SQ_FT	34.72156-118.138428
CP_3273 PUB	DEPRESS	- 0.04	ACRE	34.71861-118.147788
CP_3274 PUB	DEPRESS	S 21.00	SQ_FT	34.71946-118.146244
CP_3275 PUB	DEPRESS	- 0.04	ACRE	34.71931-118.145537

PD_3276 PUB PD_3277 PUB PD_3278 PUB PD_3279 PUB PD 3280 PUB PD-3281 PUB PD_3282 PUB PD 3283 PUB PD 3284 PUB PD_3285 PUB PD 3286 PUB PD_3287 PUB PD_3288 PUB PD 3289 PUB CP 3290 PUB PD_3291 PUB CP 3292 PUB PD_3293 PUB PD_3294 PUB CP 3295 PUB CP_3296 PUB CP_3297 PUB CP_3298 PUB CP_3299 PUB CP_3300 PUB PD_3301 PUB CP_3302 PUB CP_3303 PUB CP_3304 PUB CP_3305 PUB CP_3306 PUB CP 3307 PUB CP_3308 PUB CP 3309 PUB CP 3310 PUB CP_3311 PUB CP_3312 PUB CP_3313 PUB CP_3314 PUB CP 3315 PUB PD_3316 PUB PD_3317 PUB PD_3318 PUB PD_3319 PUB PD_3320 PUB PD 3321 PUB PD_3322 PUB PD_3323 PUB PD 3324 PUB PD_3325 PUB PD_3326 PUB PD 3327 PUB PD_3328 PUB PD_3329 PUB PD_3330 PUB PD_3331 PUB PD_3332 PUB CP_3347-039 CP_3348-038 CP_3349-001 CP_3349-002 CP_3349-003 CP_3349-004 CP_3350-001
CP_3350-002 CP_3351-031

DEPRESS	- 110	SQ_FT	34.71556-118.141676
DEPRESS	S 25	SQ_FT	34.71399-118.141062
DEPRESS	- 214.00	SQ_FT	34.71313-118.140978
DEPRESS	- 0.02	ACRE	34.7137-118.140893
DEPRESS	S 209	SQ_FT	34.71359-118.140858
DEPRESS	S 336	SQ_FT	34.71395-118.140691
DEPRESS	S 268.00	SQ_FT	34.71378-118.14042
DEPRESS	- 0.04	ACRE	34.71525-118.139839
DEPRESS	- 2	SQ_FT	34.71924-118.139811
DEPRESS	S 10	SQ_FT	34.71919-118.139803
DEPRESS	S 187.00	SQ_FT	34.71927-118.13979
DEPRESS	- 0.02	ACRE	34.71911-118.139767
DEPRESS	- 73	SQ_FT	34.71815-118.139616
DEPRESS	- 68	SQ_FT	34.71158-118.138387
DEPRESS	S 90	SQ_FT	34.71518-118.138114
DEPRESS	S 130.00	SQ_FT	34.71386-118.13796
DEPRESS	- 0.02	ACRE	$34.715-118.137868$
DEPRESS	- 84.00	SQ_FT	34.71387-118.137862
DEPRESS	- 0.02	ACRE	34.71379-118.137765
DEPRESS	- 0.08	ACRE	34.71681-118.137249
DEPRESS	S 42	SQ_FT	34.71618-118.137224
DEPRESS	- 141	SQ_FT	34.71542-118.137157
DEPRESS	S 13	SQ_FT	34.71504-118.136838
DEPRESS	9	SQ_FT	$34.7173-118.136811$
DEPRESS	S 11	SQ_FT	34.71731-118.136789
DEPRESS	- 1.00	SQ_FT	$34.7145-118.136749$
DEPRESS	- 0.05	ACRE	34.71581-118.136738
DEPRESS	- 0.03	ACRE	34.71686-118.1365
DEPRESS	- 120	SQ_FT	34.71636-118.136461
DEPRESS	S 46	SQ_FT	34.71761-118.136329
DEPRESS	S 339	SQ_FT	34.71599-118.136319
DEPRESS	S6	SQ_FT	34.71669-118.13627
DEPRESS	- 11	SQ_FT	34.71886-118.136013
DEPRESS	S 38	SQ_FT	34.71885-118.135962
DEPRESS	- 14	SQ_FT	34.71895-118.135217
DEPRESS	-138.00	SQ_FT	34.71876-118.134597
DEPRESS	- 0.01	ACRE	34.7182-118.134172
DEPRESS	S 234	SQ_FT	34.71826-118.134098
DEPRESS	S 483	SQ_FT	34.71768-118.133773
DEPRESS	S 107.00	SQ_FT	34.71828-118.13342
DEPRESS	0.06	ACRE	34.70424-118.144209
DEPRESS	3	SQ_FT	34.70366-118.141855
DEPRESS	- 74	SQ_FT	34.70789-118.138675
DEPRESS	S 24	SQ_FT	34.70786-118.138634
DEPRESS	S 13	SQ_FT	34.70919-118.138201
DEPRESS	214	SQ_FT	34.70575-118.137953
DEPRESS	S6	SQ_FT	34.70549-118.137876
DEPRESS	S 39	SQ_FT	34.70572-118.137804
DEPRESS	S 10	SQ_FT	34.70566-118.137773
DEPRESS	S 10	SQ_FT	$34.7086-118.136237$
DEPRESS	- 24	SQ_FT	34.70723-118.135946
DEPRESS	- 8	SQ_FT	34.70345-118.141684
DEPRESS	S 23	SQ_FT	34.70177-118.136376
DEPRESS	S 34	SQ_FT	34.70149-118.13636
DEPRESS	S 24.00	SQ_FT	34.70116-118.136325
DEPRESS	- 0.01	ACRE	34.70149-118.136312
DEPRESS	S 245.0	SQ_FT	34.70355-118.13098
PUB D	DEPRESS	0.1	SQ_FT 34.78484-118.180517
PUB D	DEPRESS	0.2	SQ_FT 34.78349-118.179818
PUB D	DEPRESS	3	SQ_FT 34.74934-118.152331
PUB D	DEPRESS	4	SQ_FT 34.74934-118.152331
PUB D	DEPRESS	3	SQ_FT 34.74934-118.152331
PUB D	DEPRESS	14	SQ_FT 34.74934-118.152331
PUB D	DEPRESS	10	SQ_FT 34.74615-118.152025
PUB D	DEPRESS	2	SQ_FT 34.74615-118.152025
PUB D	DEPRESS	3	SQ_FT 34.74826-118.151967

CP_3352-030	PUB	DEPRESS	17	SQ_FT	34.7462	-118.151845
CP_3353-001	PUB	DEPRESS	3	SQ_FT	$34.74902-118.151836$	
CP_3353-002	PUB	DEPRESS	5	SQ_FT	$34.74902-118.151836$.	

SOURCE:ESR/USGS Topogaphic Basemap (2016); USGS 30m Hillshade (2015); Phase 4B
from CaHSRA (4/2016); Watershed Boundary DatasetNational Hydrography Dataset (2015).

BP HSR Mapped Streams with OHwM in Amargosa Creek Watershed Study Area
\rightarrow Ephemeral Stream
\longrightarrow Ditch

Δ Lake Palmdale HUC-12 Watershed

\longrightarrow Direction of flow based on

flowlines
\square Basins

Amargosa Creek Watershed Study Area Hydrologic Connectivity

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Los Angeles County 2013 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Los Angeles County 2013 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Los Angeles County 2013 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Los Angeles County 2013 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Los Angeles County 2013 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Los Angeles County 2013 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Los Angeles County 2013 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Los Angeles County 2013 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Los Angeles County 2013 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Los Angeles County 2013 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Los Angeles County 2011 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Los Angeles County 2011 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Los Angeles County 2011 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Los Angeles County 2011 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Los Angeles County 2011 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Los Angeles County 2011 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Los Angeles County 2011 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Los Angeles County 2011 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Los Angeles County 2011 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

Los Angeles County 2011 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.
Aerial Sources: http://public.gis.lacounty.gov/public/rest/services/LACounty Cache and http://gis.apfo.usda.gov/arcgis/services/NAIP/
Retrieved November 14, 2016.

APPROVED JURISDICTIONAL DETERMINATION FORM U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): August 25, 2017

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: SPL-2010-00945-VCL-JD-9
C. PROJECT LOCATION AND BACKGROUND INFORMATION:

State: CA County/parish/borough: Los Angeles County City: N/A
Center coordinates of site (lat/long in degree decimal format): Lat. $34.567070^{\circ} \mathbf{N}$, Long. $118.114223^{\circ} \mathbf{W}$.
Universal Transverse Mercator: 397790 m E, 3825598 m N
Name of nearest waterbody: Lake Palmdale (south of the study area)
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: N/A
Name of watershed or Hydrologic Unit Code (HUC): Lake Palmdale, California, 180902061501
Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
\boxtimes Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form.

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

Office (Desk) Determination. Date: July 25, 2017
Field Determination. Date(s):

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There Are no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

Waters subject to the ebb and flow of the tide.
Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.
Explain:

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There Are no "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
a. Indicate presence of waters of U.S. in review area (check all that apply): ${ }^{1}$
$\square \quad$ TNWs, including territorial seas
Wetlands adjacent to TNWs
Relatively permanent waters ${ }^{2}$ (RPWs) that flow directly or indirectly into TNWs
Non-RPWs that flow directly or indirectly into TNWs
Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
Impoundments of jurisdictional waters
Isolated (interstate or intrastate) waters, including isolated wetlands
b. Identify (estimate) size of waters of the U.S. in the review area:

Non-wetland waters: linear feet: width (ft) and/or acres.
Wetlands: acres.
c. Limits (boundaries) of jurisdiction based on: Not Applicable.

Elevation of established OHWM (if known):
2. Non-regulated waters/wetlands (check if applicable): ${ }^{3}$
\boxtimes Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain:
Within the project area of the Lake Palmdale HUC 12, there are a total of 3 aquatic features. These features include two ditches, spanning a total of approximately 190 linear feet and covering approximately 0.018 acre, and one unnamed ephemeral stream, spanning approximately 47 linear feet and covering approximately 0.007 acre. Note that ditches constructed in uplands that do not capture waters of the U.S. and do not drain to waters of the U.S. are not typically regulated. Labeled maps and tables of

[^30]features and dimensions are provided in the Aquatic Resources Delineation Report, which identifies each feature according to which HUC-12 watershed it occurs within.

The two ephemeral ditches, features Ditch_0461 and Ditch_0462, originate adjacent from run-off from along Sierra Highway and the existing railroad, and flow into the unnamed ephemeral stream, feature Str_0463. This unnamed ephemeral stream flows in a northeastern direction toward Rosamond Dry Lake north of the study area. Immediately outside the study area, this feature flows through an undeveloped lot towards residential and commercially developed lots. At this point, the hydrologic path of this feature is obscured by development. No discernable hydrologic connection can be traced to other surface waters downslope of this study area. However, a review of topographic maps and watershed boundary datasets indicates that waters from these features drain toward Rosamond Dry Lake.

There are no Traditional Navigable Waters (TNWs) or Relatively Permanent Waters (RPWs) in the study area, and the ephemeral desert streams in the study area are not tributaries to RPWs or TNWs. A previous SWANCC watershed-level Approved JD for Antelope Valley (HUC10 \#s 1809020609 through 1809020624, excluding those portions of HUC12s 18090206151, 1901902061102, and 180902061103 that drain toward Lake Palmdale and its tributaries) determined that Rosamond, Buckhorn and Rogers Dry Lakes, and their tributaries, (i.e. the Antelope Valley Watershed, excluding Lake Palmdale and tributaries to Lake Palmdale) are nonjurisdictional waters of the United States under SWANCC. This determination, SPL-2011-01084-SLP, dated June 7, 2013, found that these Antelope Valley waters are not tributary to either a TNW or an (a)(3) water and Rosamond, Buckhorn and Rogers Dry Lakes are not (a)(3) waters themselves. The Corps made this watershed conclusion because the Antelope Valley watershed is an isolated, intrastate watershed without any surface water related interstate commerce. This previous determination is still in effect, and is appended as a supporting document for this determination.

Previously approved jurisdictional determinations have been made for tributaries to these dry lakes. When these lakes were analyzed in SPL-2011-01084-SLP, the Corps found no published commercial uses of the surface waters of any tributaries to Rosamond, Buckhorn and Rogers Dry Lakes, and determined that a review of aerial photographs (Google Earth) also did not depict surface water usage of any drainages tributary to the dry lakes. The Corps found that all tributaries to Rosamond, Buckhorn and Rogers Dry Lakes are not (a)(3) waters as defined by 33 C.F.R. section 328.3(a)(3)(i-iii). The previous determination found that since Rosamond, Buckhorn and Rogers Dry Lakes are intrastate, isolated waters without a surface water connection to commerce, all tributaries to Rosamond, Buckhorn and Rogers Dry Lakes as part of the overall watershed system are also isolated and additionally have no nexus to commerce. A review of current conditions and updated literature review found that conditions have not changed since the SPL-2011-01084-SLP determination for Antelope Valley. While Ditch_0461, Ditch_0462, and Str_0463 are located within the Lake Palmdale watershed, these features do not flow to either Lake Palmdale or tributaries to Lake Palmdale. Further, these features flow towards Rosamond Dry Lake. Thus, the one ephemeral stream segment and two ditches in this study area are intrastate, isolated waters with no interstate or foreign commerce connection and therefore are not currently regulated.

The above is based upon the review of aerial photographs (Google Earth, accessed July 25, 2017) that also did not show surface water usage of the project drainages or the Rosamond Dry Lake terminus. Since the Rosamond Dry Lake is an intrastate, isolated water without a surface water connection to commerce (see prior AJD file No. SPL-2011-01084-SLP), the subject two ditches and one unnamed ephemeral desert wash, as part of the same overall system, are also isolated and additionally have no nexus to commerce.

Based on the information above, the subject two ditches and one unnamed ephemeral desert wash, are NONJURISDICTIONAL waters of the United States, since the waters are NOT tributary to either a TNW or an (a)(3) water and are NOT (a)(3) waters themselves. The Corps makes such a conclusion since the waters are tribuatary to an isolated, intrastate dry lake.

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A. 1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A. 1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW

Identify TNW:
Summarize rationale supporting determination:
2. Wetland adjacent to TNW

Summarize rationale supporting conclusion that wetland is "adjacent":

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody ${ }^{4}$ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B. 1 for the tributary, Section III.B. 2 for any onsite wetlands, and Section III.B. 3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
(i) General Area Conditions:
Watershed size: \quad Pick List
Drainage area: \quad Pick List
Average annual rainfall: \quad inches
Average annual snowfall: \quad inches
(ii) Physical Characteristics:
(a) Relationship with TNW:

Tributary flows directly into TNW.Tributary flows through Pick List tributaries before entering TNW.
Project waters are Pick List river miles from TNW.
Project waters are Pick List river miles from RPW.
Project waters are Pick List aerial (straight) miles from TNW.
Project waters are Pick List aerial (straight) miles from RPW.
Project waters cross or serve as state boundaries. Explain:
Identify flow route to TNW^{5} :
Tributary stream order, if known:

[^31](b) General Tributary Characteristics (check all that apply): Tributary is:
\square Natural
Artificial (man-made). Explain:Manipulated (man-altered). Explain:
Tributary properties with respect to top of bank (estimate):

Average width: \quad feet	
Average depth:	feet
Average side slopes:	Pick List.

Primary tributary substrate composition (check all that apply):

\square Silts	\square Sands	\square Concrete
\square Cobbles	\square Gravel	\square Muck
\square Bedrock	\square Vegetation. Type/\% cover:	
\square Other. Explain:	\cdot	

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain:
Presence of run/riffle/pool complexes. Explain:
Tributary geometry: Pick List
Tributary gradient (approximate average slope): \%
(c) Flow:

Tributary provides for: Pick List
Estimate average number of flow events in review area/year: Pick List
Describe flow regime:
Other information on duration and volume:
Surface flow is: Pick List. Characteristics:
Subsurface flow: Pick List. Explain findings:
\square Dye (or other) test performed:
Tributary has (check all that apply):
\square Bed and banks
$\square \mathrm{OHWM}^{6}$ (check all indicators that apply):

| \square clear, natural line impressed on the bank | \square the presence of litter and debris |
| :--- | :--- | :--- |
| \square changes in the character of soil | \square destruction of terrestrial vegetation |
| \square shelving | \square the presence of wrack line |

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
\square High Tide Line indicated by:
Mean High Water Mark indicated by:oil or scum line along shore objects \square survey to available datum;fine shell or debris deposits (foreshore)physical markings;physical markings/characteristicsvegetation lines/changes in vegetation types.
\square tidal gauges
other (list):

(iii) Chemical Characteristics:

Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.). Explain:
Identify specific pollutants, if known:

[^32](iv) Biological Characteristics. Channel supports (check all that apply):
\square Riparian corridor. Characteristics (type, average width):
\square Wetland fringe. Characteristics:
Habitat for:Federally Listed species. Explain findings:Fish/spawn areas. Explain findings:
\square Other environmentally-sensitive species. Explain findings:Aquatic/wildlife diversity. Explain findings:

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics:

Properties:
Wetland size: acres
Wetland type. Explain:
Wetland quality. Explain:
Project wetlands cross or serve as state boundaries. Explain:
(b) General Flow Relationship with Non-TNW:

Flow is: Pick List. Explain:
Surface flow is: Pick List Characteristics:

Subsurface flow: Pick List. Explain findings:Dye (or other) test performed:
(c) Wetland Adjacency Determination with Non-TNW:Directly abuttingNot directly abutting
\square Discrete wetland hydrologic connection. Explain:
\square Ecological connection. Explain:
Separated by berm/barrier. Explain:
(d) Proximity (Relationship) to TNW

Project wetlands are Pick List river miles from TNW.
Project waters are Pick List aerial (straight) miles from TNW.
Flow is from: Pick List.
Estimate approximate location of wetland as within the Pick List floodplain.

(ii) Chemical Characteristics:

Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain:
Identify specific pollutants, if known:
(iii) Biological Characteristics. Wetland supports (check all that apply):
\square Riparian buffer. Characteristics (type, average width):
\square Vegetation type/percent cover. Explain:
\square Habitat for:
\square Federally Listed species. Explain findings:
\square Fish/spawn areas. Explain findings:Other environmentally-sensitive species. Explain findings:Aquatic/wildlife diversity. Explain findings:
3. Characteristics of all wetlands adjacent to the tributary (if any)

All wetland(s) being considered in the cumulative analysis: Pick List
Approximately () acres in total are being considered in the cumulative analysis.

For each wetland, specify the following:
Directly abuts? (Y/N) Size (in acres) \quad Directly abuts? (Y/N) Size (in acres)

Summarize overall biological, chemical and physical functions being performed:

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D:
2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:
3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D:

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:TNWs: linear feet width (ft), Or, acres.
Wetlands adjacent to TNWs: acres.
2. RPWs that flow directly or indirectly into TNWs.
\square Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial:
\square Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally:

Provide estimates for jurisdictional waters in the review area (check all that apply):
\square Tributary waters: linear feet width (ft).
\square Other non-wetland waters: acres. Identify type(s) of waters: .
3. Non-RPWs ${ }^{8}$ that flow directly or indirectly into TNWs.
\square Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):
\square Tributary waters: linear feet width (ft).
\square Other non-wetland waters: acres.
Identify type(s) of waters: .
4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
\square Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:
\square Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW:

Provide acreage estimates for jurisdictional wetlands in the review area:
acres.
5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
\square Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: acres.
6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: acres.
7. Impoundments of jurisdictional waters. ${ }^{9}$

As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
Demonstrate that impoundment was created from "waters of the U.S.," or
\square Demonstrate that water meets the criteria for one of the categories presented above (1-6), orDemonstrate that water is isolated with a nexus to commerce (see E below).

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY): ${ }^{10}$

\square which are or could be used by interstate or foreign travelers for recreational or other purposes.
\square from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
\square which are or could be used for industrial purposes by industries in interstate commerce.
\square Interstate isolated waters. Explain:
\square Other factors. Explain:
Identify water body and summarize rationale supporting determination:

[^33]Provide estimates for jurisdictional waters in the review area (check all that apply):
\square Tributary waters: linear feet width (ft).Other non-wetland waters: acres. Identify type(s) of waters:Wetlands: acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

\square If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
\boxtimes Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
\boxtimes Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR).
Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain:
Other: (explain, if not covered above):
Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
Non-wetland waters (i.e., rivers, streams): 47 linear feet 6 feet in width (ft).
\square Lakes/ponds: acres.
Other non-wetland waters: 0.018 acres. List type of aquatic resource: Ditches.
\square Wetlands: acres
Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply):

\square	Non-wetland waters (i.e., rivers, streams): linear feet, width (ft).
\square	Lakes/ponds: acres.
\square	Other non-wetland waters: acres. List type of aquatic resource:
\square	Wetlands: acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
\boxtimes Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Features are depicted on Map Sheets 171 in Appendix E of the submitted delineation..
\square Data sheets prepared/submitted by or on behalf of the applicant/consultant.
\square Office concurs with data sheets/delineation report.
\square Office does not concur with data sheets/delineation report.
\square Data sheets prepared by the Corps:
Corps navigable waters' study:
U U.S. Geological Survey Hydrologic Atlas:
\boxtimes USGS NHD data.
\boxtimes USGS 8 and 12 digit HUC maps.
\boxtimes U.S. Geological Survey map(s). Cite scale \& quad name: Palmdale 7.5 minute quadrangle.
USDA Natural Resources Conservation Service Soil Survey. Citation:
\square National wetlands inventory map(s). Cite name:
\square State/Local wetland inventory map(s):
FEMA/FIRM maps:
100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929)
Photographs: \boxtimes Aerial (Name \& Date):NAIP Imagery 2005 and 2014 at 1-m resolution; LA County Imagery 2011 and 2013 at a 1-foot resolution.
\qquad Other (Name \& Date):
\boxtimes Previous determination(s). File no. and date of response letter: SPL-2011-01084-SLP, June 7, 2013.
\square Applicable/supporting case law:
\square Applicable/supporting scientific literature:
\boxtimes Other information (please specify): Aquatic Resources Delineation Report prepared by the applicant/consultant references additional materials; also Appendix E contains map sheets; Appendix F contains dimensions. HUC watershed maps of review areas with NHD Data provided by the applicant/consultant; general use of NAIP Imagery 2009, 2010, and 2012 at 1-m resolution; LA County Imagery 2015 at 1 -foot resolution; 2015 Site specific IR Imagery, 3-inch color pixel; Bing Aerial Imagery - multiple years (scale
dependent); ESRI World Imagery (streaming service) multiple years (scale dependent); Google Earth Historic Photos (used for reference and includes portions from above listed sources).
B. ADDITIONAL COMMENTS TO SUPPORT JD:

Waters_Name Cowardin_Code HGM_Code Amount Units Latitude Longitude
Ditch_0461
Ditch 0462
Str $0 \overline{4} 63$
R6 RIVERINE
R6 RIVERINE
0.009 ACRE 34.5667 -118.115
0.009 ACRE 34.56725-118.114
0.007 ACRE 34.56697-118.114.

BP HSR Mapped Streams in the Lake
Palmdale Watershed Study Area
\longrightarrow Ephemeral Stream
\longrightarrow Ditch
\square Study Area in the Lake Palmdaleake PalmdaleOther HUC-12 Watersheds
Wetlands Study Area
$\longrightarrow \begin{aligned} & \text { Direction of flow based on } \\ & \text { NHD flowlines }\end{aligned}$
--> Presumed Hydrologic Path

- Governor Edmund G Brown

BP HSR Mapped Streams in the Lake Palmdale Watershed Study Area
\longrightarrow Ephemeral Stream
\longrightarrow Ditch
\square Study Area in the Lake Palmdale Study Area in
Watershed Watershed

Wetlands Study Area
Wetlands Study Area
\longrightarrow Direction of flow based on
NHD flowlines
--> Presumed Hydrologic Path

Lake Palmdale Watershed Study Area Hydrologic Connectivity

NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 12 Watershed Boundaries.

NAIP 2014 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 12 Watershed Boundaries.

Los Angeles 2011 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 12 Watershed Boundaries.

Los Angeles 2013 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 12 Watershed Boundaries.

[^0]: ${ }^{1}$ Boxes checked below shall be supported by completing the appropriate sections in Section III below.
 ${ }^{2}$ For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months).
 ${ }^{3}$ Supporting documentation is presented in Section III.F.

[^1]: ${ }^{4}$ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
 ${ }^{5}$ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

[^2]: ${ }^{6}$ A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.
 ${ }^{7}$ Ibid.

[^3]: ${ }^{8}$ See Footnote \# 3.
 ${ }^{9}$ To complete the analysis refer to the key in Section III.D. 6 of the Instructional Guidebook.
 ${ }^{10}$ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.

[^4]: NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

[^5]: NAIP 2005 Aerial Photo. Yellow Line - Study Area. Red Line - HUC 10 Watershed Boundaries.

[^6]: ${ }^{1}$ Boxes checked below shall be supported by completing the appropriate sections in Section III below.
 ${ }^{2}$ For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months).
 ${ }^{3}$ Supporting documentation is presented in Section III.F.

[^7]: ${ }^{4}$ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
 ${ }^{5}$ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

[^8]: ${ }^{6}$ A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.
 ${ }^{7}$ Ibid.

[^9]: ${ }^{8}$ See Footnote \# 3.
 ${ }^{9}$ To complete the analysis refer to the key in Section III.D. 6 of the Instructional Guidebook.
 ${ }^{10}$ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.

[^10]: ${ }^{1}$ Boxes checked below shall be supported by completing the appropriate sections in Section III below.
 ${ }^{2}$ For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months).
 ${ }^{3}$ Supporting documentation is presented in Section III.F.

[^11]: ${ }^{4}$ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
 ${ }^{5}$ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

[^12]: ${ }^{6}$ A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.
 ${ }^{7}$ Ibid.

[^13]: ${ }^{8}$ See Footnote \# 3.
 ${ }^{9}$ To complete the analysis refer to the key in Section III.D. 6 of the Instructional Guidebook.
 ${ }^{10}$ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.

[^14]: ${ }^{1}$ Boxes checked below shall be supported by completing the appropriate sections in Section III below.
 ${ }^{2}$ For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months).
 ${ }^{3}$ Supporting documentation is presented in Section III.F.

[^15]: ${ }^{4}$ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
 ${ }^{5}$ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

[^16]: ${ }^{6}$ A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.
 ${ }^{7}$ Ibid.

[^17]: ${ }^{8}$ See Footnote \# 3.
 ${ }^{9}$ To complete the analysis refer to the key in Section III.D. 6 of the Instructional Guidebook.
 ${ }^{10}$ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.

[^18]: ${ }^{1}$ Boxes checked below shall be supported by completing the appropriate sections in Section III below.
 ${ }^{2}$ For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months).
 ${ }^{3}$ Supporting documentation is presented in Section III.F.

[^19]: ${ }^{4}$ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
 ${ }^{5}$ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

[^20]: ${ }^{6}$ A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.
 ${ }^{7}$ Ibid.

[^21]: ${ }^{8}$ See Footnote \# 3.
 ${ }^{9}$ To complete the analysis refer to the key in Section III.D. 6 of the Instructional Guidebook.
 ${ }^{10}$ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.

[^22]: ${ }^{1}$ Boxes checked below shall be supported by completing the appropriate sections in Section III below.
 ${ }^{2}$ For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months).
 ${ }^{3}$ Supporting documentation is presented in Section III.F.

[^23]: ${ }^{4}$ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
 ${ }^{5}$ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

[^24]: ${ }^{6}$ A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.
 ${ }^{7}$ Ibid.

[^25]: ${ }^{8}$ See Footnote \# 3.
 ${ }^{9}$ To complete the analysis refer to the key in Section III.D. 6 of the Instructional Guidebook.
 ${ }^{10}$ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.

[^26]: ${ }^{1}$ Boxes checked below shall be supported by completing the appropriate sections in Section III below.
 ${ }^{2}$ For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months).
 ${ }^{3}$ Supporting documentation is presented in Section III.F.

[^27]: ${ }^{4}$ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
 ${ }^{5}$ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

[^28]: ${ }^{6}$ A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.
 ${ }^{7}$ Ibid.

[^29]: ${ }^{8}$ See Footnote \# 3.
 ${ }^{9}$ To complete the analysis refer to the key in Section III.D. 6 of the Instructional Guidebook.
 ${ }^{10}$ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.

[^30]: ${ }^{1}$ Boxes checked below shall be supported by completing the appropriate sections in Section III below.
 ${ }^{2}$ For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months).
 ${ }^{3}$ Supporting documentation is presented in Section III.F.

[^31]: ${ }^{4}$ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
 ${ }^{5}$ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

[^32]: ${ }^{6}$ A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.
 ${ }^{7}$ Ibid.

[^33]: ${ }^{8}$ See Footnote \# 3.
 ${ }^{9}$ To complete the analysis refer to the key in Section III.D. 6 of the Instructional Guidebook.
 ${ }^{10}$ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.

